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Abstract

We use a field experiment in Bihar, India to test whether plot-specific fertilizer recommendations

affect fertilizer usage and farming practices. We do not find compelling evidence that the infor-

mation treatment led farmers to substantially change their overall fertilizer application nor their

willingness to pay for recommended micronutrients, though there is some evidence that farmers

may have altered the timing of their fertilizer application in such a way that improves fertilizer

use efficiency. To rationalize the top line results, we model and test the impacts of confidence

on farmers’ responsiveness to input recommendations and soil quality measures. We find that

farmers with less disperse priors (greater confidence) have a lower ex ante willingness to pay for

soil testing and lower responsiveness to the fertilizer recommendations. These results suggest

that heterogeneity in beliefs may constrain the effectiveness of information provision, even when

the information is credible.
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1 Introduction

The imbalanced use of fertilizers is a major economic and environmental concern in emerging

economies (FAO, 2019; Vitousek et al., 2009), including in many parts of India (Bora, 2022). In In-

dia, farmers tend to under apply certain types of fertilizers and over apply others, which reduces

long-term yields and farmer income, harms soil health and pollutes water resources. While soil

nutrient management is vital to close the existing yield gap in cultivated crops to meet population

and consumption demands (Mueller et al., 2012), governments face the challenge of encourag-

ing yield growth while simultaneously decreasing the environmental impacts of input intensi-

fication. Since the over-utilized fertilizers are often subsidized, it also entails substantial public

expenditure with little benefit for crop yields.

To address these imbalances, in 2015 the Government of India launched a Soil Health Card

(SHC) program that aims to provide all 140 million farmers in the country with lab-derived soil

health information and targeted fertilizer application recommendations on a triennial basis. The

implicit assumption underlying the program is that farmers misapply fertilizers because, at least

in part, they lack scientific information and recommendations that are targeted to their specific

soil attributes, and that providing them with this information will alter their fertilizer usage. In

this paper, we report results from an experiment based on the model of the SHC program that

provided farmers in a random subset of villages with plot-level soil fertility information and

customized recommendations on three of the most common macronutrients and their accompa-

nying fertilizers as well as two micronutrients. We find the program to have small but positive

effects on urea usage and the adoption of a recommended practice pertaining to the timing of

fertilizer application, but no impact on the application of the other two primary macronutrients.

We then investigate the reasons, focusing on the role of their prior beliefs.

India’s Soil Health Card program is likely one of the largest informational interventions in

the developing world. Although information provision interventions have become more com-

mon in various policy domains due to their relatively low cost, evidence on their effectiveness

remains mixed, particularly in agricultural contexts (Haaland et al., 2022).1 Informational barri-
1 There is a large literature that studies the impacts of information provision on health behavior and outcomes
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ers are thought to be a major likely inhibitor of the adoption of improved farming practices, inputs

and technologies by smallholder farmers (Fabregas et al., 2019; Jack, 2013).2 However, even if

information is a binding constraint, various factors may limit the impacts of informational inter-

ventions on agents' choices. One class of explanations focus on the quality of the information and

the manner in which it is disseminated. 3 Another class of explanations focuses on the recipients

of the information and potential biases in learning and information processing (Barham et al.,

2018; Hanna et al., 2014).4

Our analysis focuses on the possibility - relatively little studied in the agricultural sector -

that farmers' baseline con�dence can systematically a�ect responsiveness to externally provided

information. We use experimental variation in information provision to assess how farmers re-

spond to new information and identify farmer characteristics that are correlated with responsive-

ness. Previous research suggests that biases associated with the strength of peoples' priors are

important for learning and information responsiveness. In particular, excessive certainty in the

accuracy of their prior beliefs (overprecision) (Benjamin, 2019; Moore et al., 2015) can lead to peo-

ple to neglect advice and scienti�c information, which can be costly if the information is useful.

In the agricultural context, it is very common for extension professionals to anecdotally blame

such beliefs for the persistence of (what they consider to be) misguided practices by farmers.

First, we present results from a randomized controlled trial with 864 households across 48

villages in the Indian state of Bihar that was introduced before the government introduced it's

national SHC program, though our pilot shared many of the characteristics of the government's

(Bennett et al., 2018; Dupas, 2011; Guiteras et al., 2016), job search (Belot et al., 2019; Fafchamps et al., 2020), educa-
tion investments (Dizon-Ross, 2019; Jensen, 2010), and increasingly in public policy (Banuri et al., 2019; Hjort et al.,
2019; Vivalt and Coville, 2020) under the assumption that lack of information about costs and bene�ts is a binding
constraint on optimal investments and behaviors.

2Numerous constraints a�ect learning and technology adoption including liquidity and credit constraints, low
input quality, risk, and various behavioral biases. See Magruder (2018) and Jack (2013) for excellent overviews of
the literature on barriers to technology di�usion in developing countries.

3For example, in a highly heterogeneous environment typical of smallholder farming, generic or insu�ciently tar-
geted recommendations may be of little value (Suri, 2011). Furthermore, extension agents, who are typically charged
with delivering information to farmers, are often overtaxed, poorly trained, and poorly incentivized (Anderson and
Feder, 2007). Secondary sources of information (e.g., so-called \lead farmers") may not be incentivized to di�use
information through social networks or may be sub-optimally placed within them to reach most farmers (Beaman
et al., 2021; BenYishay and Mobarak, 2018).

4For example, Hanna et al. (2014) points to the di�culty of noticing crucial dimensions of productivity as an
impediment to learning from experience or from others. Barham et al. (2018) show that receptiveness to advice sped
up adoption of GM maize among farmers in the U.S with low cognitive ability, but slowed adoption among farmers
with high cognitive ability.
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planned program. Following a baseline survey, trained enumerators collected soil samples from

farmers in treatment villages. The samples were tested in a certi�ed laboratory and the results

were used by agronomists to prepare customized recommendations for the usage rates of several

important fertilizers. In the weeks prior to planting in the 2014-15 rabiwheat season, trained �eld

sta� provided farmers with SHCs that contained information on tested nutrient levels and the

derived recommendations. We surveyed farmers before and after the season about their intended

and actual fertilizer usage.5

Even though the fertilizer recommendations di�ered substantially from farmers' self-reported

planned fertilizer applications, a comparison of endline fertilizer use between farmers in control

and treatment villages yields little evidence of substantial e�ects of the information intervention.

The results are in line with �ndings in other contexts that provided plot speci�c soil quality

information and recommendations, including Mexico (Corral et al., 2020) and Tanzania (Harou

et al., 2022). We do �nd some evidence of shifts in the timing of fertilizer applications to �t the

recommendations, but changes in total fertilizer application are evident mostly for the lowest

cost (and highly subsidized) fertilizer, and are of small relative magnitude. There is also little

evidence of shifts in the willingness to pay for micronutrient amendments that are seldom used

by the sample farmers but widely recommended by the SHCs due to pre-existing de�ciencies in

the soil. In explaining why they deviated from the SHC recommendations, farmers mostly refer

to their own beliefs, with cost appearing as a secondary factor, and only for the more expensive

fertilizers.

This latter observation motivates our empirical investigation of the role that prior beliefs { and

especially the strength of those prior beliefs { had in limiting the impact of the SHC recommen-

dations. Our analysis is guided by an extension of the target-input model (Bardhan and Udry,

1999; Foster and Rosenzweig, 1995; Jovanovic and Nyarko, 1996) that allows farmers to purchase

and use an external signal about optimal inputs. In this Bayesian framework, the precision of

farmers' prior beliefs { which we treat as a measure of one's con�dence in prior beliefs { is pre-

5During the soil testing process, roughly 7 percent of treatment farmers' samples were not able to be processed
due to contamination and were excluded from endline data collection. The project partners decided to exclude
farmers in treatment villages that did not receive soil tests. In the following analysis, we account for this attrition
using a bounding approach and discuss the implications for our results and policy recommendations.
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dicted to attenuate the demand for external information as well as the degree to which they will

use the signal to update their beliefs about optimal input usage.

To test the model's predictions, during the baseline survey we elicited from farmers stated

willingness to pay for the SHC as well subjective belief distributions about optimal fertilizer us-

age (Delavande et al., 2011). The method made use of simple visual aids and enabled us to con-

struct probability distributions for the two most widely used chemical fertilizers in our study

area. We de�ne con�dence as the inverse of the belief distribution's standard deviation. 6 In ad-

dition, we include two survey based measures of con�dence: farmers' incidence of doubts about

agricultural practices and a measure of their farming ability relative to their peers. Consistent

with recent work on within-person correlations of behavioral biases (Stango and Zinman, 2020),

we show that there is a strong correlation across our con�dence measures.

Consistent with the model's prediction, we �nd that con�dence in one's prior beliefs decreases

farmer's stated willingness-to-pay for a SHC. Moreover, endline fertilizer use is found to be cor-

related with both a farmer's pre-season planned use as well as the SHC recommendation, and

represented as a weighted average of the two. The weight given to the SHC recommendation

is found to be negatively and signi�cantly correlated with their con�dence in prior beliefs, in-

cluding when we control for a battery of other characteristics. We �nd similar results using two

survey based measures of con�dence. In short, farmers who are more con�dent in their beliefs at

project baseline place less weight on the SHC in determining their �nal fertilizer application. In

contrast, no such e�ect is found for self-reported trust in extension agents, even though it is low

in general, suggesting priors are a more important determinant than trust of farmers' utilization

of external information. While we cannot explicitly test for overcon�dence, we provide some of

the �rst �eld evidence that the strength of farmers' prior beliefs { regardless of whether those

beliefs are right or wrong { can indeed reduce both demand for and responsiveness to an infor-

mational intervention. We further show that the elicited beliefs measures, which are costly and

time consuming to collect, are correlated with survey based measures of con�dence that similarly

predict responsiveness to the fertilizer recommendations.

6See Moore and Healy (2008) for further discussion of how con�dence has been measured in both the psychol-
ogy and economics literature. Our measure is closest to the concept of \overprecision," or the excessive certainty
regarding the accuracy of one's beliefs.
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Our work contributes to and bridges the literature studying the e�ects of information provi-

sion on technology adoption, and the literature analyzing the role of information on belief up-

dating and decision making. Recent studies that investigate the e�ectiveness of various forms of

information provision to farmers in developing countries include, but are not limited to: Beaman

et al. (2021); BenYishay and Mobarak (2018); Casaburi et al. (2014); Cole and Fernando (2021); Em-

erick and Dar (2020). A few studies investigate the e�ectiveness of targeted soil information, as

we do. Using a �eld experiment in Mexico, Corral et al. (2020) vary the speci�city of the soil-

test based recommendations (own plot vs a local average) as well as the 
exibility of an in-kind

grant of recommended fertilizers. While recommendations and extension services resulted in a

small but persistent adoption of practices, averaged soil information was as e�ective as providing

plot-speci�c recommendations. Similarly, Harou et al. (2022) �nd that plot-speci�c information

in Tanzania was insu�cient to increase fertilizer adoption on its own, though vouchers for fertil-

izer purchase or a combination of both vouchers and information increased usage and yields. In

Gujarat, India, Cole and Sharma (2017) and Cole et al. (2020) investigate the e�ects of customized

soil recommendations through mobile phones. They show that aid materials can help improve

low levels of comprehension of SHCs, and experimentally demonstrate that the SHCs are able

to a�ect fertilizer usage. The di�erence between these results and our own is notable, and may

potentially be related to substantial di�erences in the populations under study, the ease of un-

derstanding the SHCs and pre-existing relationship and trust between the Gujarati sample and

the NGO that provides the information. Murphy et al. (2017) analyse the e�ect of plot level soil

information and fertilizer recommendations on willingness to pay for inputs using experimen-

tal auctions. They �nd that the information a�ects farmers' WTP for DAP, and that the e�ect is

stronger when farmers receive a negative recommendation (i.e. to no prioritize DAP). We are

not aware of other work that examines how farmers' beliefs { particularly the strength of their

beliefs { a�ect demand for and responsiveness to tailored advice like the SHCs. Our results �ll

this gap by explaining the attenuated impact of providing farmers with information, and suggest

that identifying and targeting advice to farmers with low con�dence may produce the highest

returns to information di�usion e�orts, especially if there are cost constraints.

This study also contributes to the comparatively thinner literature that uses information pro-
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vision to study belief updating and barriers to responsiveness to information. Recent evidence

from survey experiments documents that �rms and individuals update their expectations in re-

sponse to information about home prices (Armona et al., 2019; Fuster et al., 2020) and GDP growth

(Coibion et al., 2018; Roth and Wohlfart, 2020) and that policymakers and practitioners update

their beliefs about policy e�ectiveness in response to research �ndings (Hjort et al., 2019; Vi-

valt and Coville, 2020). Across these domains, heterogeneity in updating arises due to a variety

of individual characteristics and biases. These include numeracy and \taste" for information

(Fuster et al., 2020), as well as variance neglect and asymmetric updating in favor of good news

(Vivalt and Coville, 2020). 7 Increasingly, research on belief updating has included measures of

prior uncertainty to test its impact on Bayesian updating (Armona et al., 2019; Roth and Wohlfart,

2019) though evidence of its e�ect is mixed. While previous papers have shown that respondents

with higher stated prior uncertainty tend to react more to information about in
ation (Armantier

et al., 2016; Coibion et al., 2018), research on house price expectations �nd either no e�ect (Ar-

mona et al., 2019) or the opposite e�ect (Fuster et al., 2020). We provide the �rst evidence on

information provision and belief updating in the context of agriculture, where large amounts of

public and private expenditure are dedicated to reducing information asymmetries with limited

results. Further, using a large-scale information intervention, we extend the existing literature by

examining how quantitative measures of prior uncertainty a�ect actual investment choices and

responsiveness to advice.8

Finally, we make a further contribution by operationalizing the dispersion of a farmer's sub-

jective probability estimates, a fundamental parameter in learning models, within an existing

technology adoption framework. The model used in this paper is an adaptation of the Bayesian

learning-by-doing model popularized by Jovanovic and Nyarko (1996), and adapted to the agri-

cultural context by Foster and Rosenzweig (1995). The model relies on the agent updating the

mean and variance of her beliefs over the true value of a parameter, in this case optimal fertil-

izer input levels. The majority of previous research ignores heterogeneity along this dimension

7 Vivalt and Coville (2020) �nd evidence for both biases amongst policymakers and practitioners. Further, they
consider the overweighting of positive impact evaluation results compared to negative results as a form of overcon-
�dence

8Previously cited literature connects prior uncertainty to belief updating, though no studies to our knowledge
move beyond the direct e�ects on beliefs to real-world investment choices.
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and assumes common priors across farmers. Our method allows us to quantify these parameters

directly from farmers' subjective beliefs distributions. The relatively simple method of belief elic-

itation we use, summarized in Delavande et al. (2011) and described in section 3 below, requires

respondents to allocate tokens across bins to represent probabilities of events occurring. Similar

measures have been used to elicit expectations about future earnings and resulting education

choices in Mexico (Attanasio and Kaufmann, 2009), expectations of rainfall among Kenyan pas-

toralists (Lybbert et al., 2007), and expectations about contracting and death from HIV/AIDS in

Malawi (Delavande and Kohler, 2009), but this is the �rst study that has used the information

on farmers' subjective beliefs to inform a measure of farmer con�dence and operationalize this

measure in explaining farm management.

The remainder of this paper is organized as follows. In Section 2, we describe a model of

learning about optimal input usage that provides a series of testable hypotheses about the rela-

tionship between the strength of farmers' prior beliefs and their responsiveness { or lack thereof

{ to targeted information. In Section 3, we describe the soil testing intervention and the data col-

lection and provide summary statistics. We estimate the impacts of the intervention on fertilizer

usage in Section 4. In Section 5 we investigate the impacts of con�dence on responsiveness to the

recommendations and discuss demand for the SHCs. Section 6 concludes.

2 Model of information demand and responsiveness

In this section, we present a model of information demand and responsiveness that demonstrates

how the strength of farmers' priors over optimal input use explains responsiveness to the soil

testing recommendations. The model is an adaptation of the target-input model (Bardhan and

Udry, 1999; Foster and Rosenzweig, 1995; Jovanovic and Nyarko, 1996). The model allows the

agent to have a period-speci�c optimal input choice by weighing her sources of information,

including own experimentation and information from her peers (Foster and Rosenzweig, 2010).

In the present application, we allow for input decisions to be informed by an external signal, and

characterize farmers' willingness to pay for the signal and how farmers' update their beliefs in

response to the information.
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The farmer has knowledge of the production function and the relationship between inputs

and pro�ts but does not know a random target parameter { in this case, the optimal level of

fertilizer. In the context of soil testing in Bihar, farmers have learned about this parameter over

multiple periods of costly individual and social experimentation, and thus, it seems reasonable

to assume that they have de�ned prior beliefs over the parameter. However, variation in shocks,

soil quality, farming ability, and con�dence prevents all of the uncertainty from being resolved

when farmers make planting decisions in the current period.

The farmer's output at time t is de�ned as qt , and is declining in the squared distance between

actual input use kt and the optimal input level � t :

qt = 1 � (kt � � t )2 (1)

The target input level, � t , is the period-speci�c level of the input that would maximize total pro-

duction. The farmer does not know the target level at the time inputs are chosen. Rather, the

farmer chooses input level kt to maximize expected output. The optimal input level at time t is

� t = � + ut (2)

where ut � N (0; � 2
u) is an independent and identically distributed shock with known variance.

The � term represents the objective mean optimal input level about which the farmer is learning

over time. The farmer does not know � at time t but has subjective (prior) beliefs about the

distribution based on a history of input decisions and realized yields: � � N (� �
t ; � 2

� t
). At time

t, the farmer's con�dence ( � � t = 1
� 2

� t

) is their perception of the reliability of her estimate. For

narrow prior distributions (i.e., with a small variance) the farmer is con�dent in her beliefs about

the optimal input level, while for wide prior distributions (i.e., with a large variance), the farmer

is less con�dent.

The period-speci�c target input level ( � t ) varies with independent and identically distributed

shocks, ut .9 The optimal annual input use will be a function of growing conditions (including,

9The period-speci�c shock can be decomposed into village-level (covariate) and individual-level (idiosyncratic)
components with respective variances � v and � i . We assume the shocks are additive and independent and exclude
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among other things, the nutrient levels present in the soil) and the ability of the farmers to adjust

other inputs to suit growing conditions. To re
ect this, we assume that the variance of the optimal

input level (� 2
u) varies across farmers and depends on farmers' ability. Farmer-speci�c ability is

denoted as � u = 1
� 2

u
, where better (higher ability) farmers have a lower variance of shocks to

optimal input usage. Ability re
ects management capacity, including e�ective coordination of

inputs such as fertilizers, pesticides, labor, irrigation, etc. That is, conditional on aggregate shocks

like weather variability and disease pressure, better farmers have a lower variance of transitory

shocks to optimal input use. 10

To simplify the exposition, we normalize output prices to one and assume that the input is

costless. Farmers apply the expected optimal target as the input level, so that kt = E t (� t ) = � �
t .

Expected output (pro�t) can be expressed as

E t (qt ) = 1 � E t [kt � � t ]2 = 1 � E t [� �
t � � � ut ]2 = 1 � � 2

� t
� � 2

u (3)

From this result it is clear that subjective expected output is decreasing in � 2
� t

and � 2
u, and therefore

increasing in the level of con�dence over the target input level ( � � t ) as well as in the farmer's ability

(� u). The farmer makes input choices to maximize expected pro�t, conditional on the precision

of her subjective beliefs about the target parameter. After applying input level � �
t and observing

the realized out qt , the farmer uses equation (1) to deduce the period speci�c optimal input, � t ,

and updates her beliefs about � using Bayes' rule:

� �
t+1 = � t

�
� u

� u + � � t

�
+ � �

t

�
� � t

� u + � � t

�
(4)

The farmer's updated expectation of the optimal input is a linear combination of her previous

expected optimal value ( � �
t ) and the revealed optimum after harvest ( � t ). Speci�cally, the weight

on the prior expectation is proportional to the farmer's con�dence in her prior beliefs, while the

the common component to simplify the analysis.
10BenYishay and Mobarak (2018) also interpret 1=� 2

u as a measure of innate farming ability in a model where
farmers are considering the purchase of a signal about new technology. Unlike in the present study, their model
assumes farmers do not have previous experience with the technology, and consequently the distribution of priors
is not considered in the decision to purchase the signal.

9



weight on the revealed target is proportional to the farmer's ability. Farmers with better ability

(larger � u) place more weight on the revealed optimum ( � t ), and their beliefs move closer to the

true value of � , holding con�dence �xed. Conversely, other things equal, farmers with higher

con�dence in their own subjective beliefs will place more weight on prior beliefs, and thus their

posterior beliefs will more closely resemble their prior beliefs. In the extreme, if a farmer were to

have absolute con�dence in her prior subjective beliefs, then the posterior beliefs will perfectly

replicate prior beliefs, such that the farmer learns nothing from additional information.

Similarly, posterior beliefs about the variance of the target parameter are updated according

to

� 2
� t +1

=
1

� � t + � u
(5)

A farmer's con�dence at time t + 1 is determined by her prior level of con�dence and her ability.

Notice however, that through combining information from the prior subjective beliefs and the

revealed information, the farmer's posterior beliefs are more precise than if she were to only rely

on one source of information.

2.1 Demand and Responsiveness to Information

In this section we extend the model to analyze the farmer's responsiveness to a signal about in-

put usage. Consider a farmer in time t = 1 with beliefs N (� �
1; � 2

� 1
) and ability � u. The farmer's

beliefs at time t = 1 are updated using the output from the initial planting season ( t = 0), when

her planting decision is made using only initial con�dence ( � � 0 ) and ability ( � u). Initial con�-

dence and ability are assumed to be randomly chosen from some arbitrary distribution and are

independent, conditional on demographics, wealth, and cognitive ability.

When considering the decision to purchase the signal, the farmer applies Bayes's rule to up-

date her beliefs about the variance of � conditional on her belief of the signal's precision or relia-

bility. Given these beliefs, the variance after purchasing the signal is calculated according to:

~� 2
� 1

=
1

� � 1 + � S
(6)
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where � S = 1
� 2

S
is the subjective precision of the signal. As before, the updated beliefs are a

weighted function of the farmer's prior beliefs and the received signal, with the weight on prior

beliefs proportional to the degree of con�dence in these beliefs and the weight on the received

signal proportional to the perceived precision of the signal. Note again, if con�dence in the prior

beliefs is high, then these updated beliefs will closely resemble the prior beliefs, other things

equal.

We assume that beliefs about the precision of the signal do not change after the signal is

revealed and that farmers are myopic in their choice to purchase the signal (i.e. only the expected

yields of the following season are included in the expected bene�ts). Substituting equation (6)

into the expected pro�t equation (3), the farmer will purchase information if and only if E(� jS =

1) � E(� jS = 0) > 0. Farmers' willingness to pay (WTP) for the signal is the di�erence between

expected pro�t with and without the signal:

WTP � E(~q1) � E(q1) = (1 � ~� 2
� 1

� � 2
u) � (1 � � 2

� 1
� � 2

u) = � 2
� 1

� ~� 2
� 1

(7)

Substituting equation (6) for the second term of this di�erence gives

WTP � � 2
� 1

�
1

1
� 2

� 1

+ 1
� 2

S

(8)

So long as the distribution of the signal has a �nite variance, this di�erence is always greater than

zero, so farmers should be willing to pay some positive price for information, regardless of its

perceived precision.

This framework allows us to make the following predictions about how farmers' valuation of

soil tests vary based on their beliefs and how their input usage is expected to respond to new

information about soil characteristics and recommendations.

Prediction 1: Demand for information is decreasing in farmer con�dence
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Combining the result from equation 7 with equation 5 yields

� 2
� 1

� ~� 2
� 1

=
1

� � 0 + � u
�

1
� � 0 + � u + � S

� WTP (9)

Taking the �rst derivative with respect to � � 0 gives

@WTP
@�� 0

=
1

(� � 0 + � u + � s)2
�

1
(� � 0 + � u)2

< 0 (10)

For any two farmers with the same ability, the farmer with higher con�dence at t = 1 will demand

less information. We note that @WTP=@�u = @WTP=@�� 0 . This results from only having two

periods, so both ability and initial con�dence are equally weighted in the calculation of � � 1 . In

reality, the weight on � u in the calculation of � � t will be scaled by the number of periods that the

farmer has planted, and this equality will only hold in the �rst period.

Prediction 2: The weight that farmers place on the signal is decreasing in their con�dence

We now consider a farmer that is given a signal S, for which the farmer has a prior about its

precision, � S. Assuming that a farmer's beliefs about the precision of the signal remain constant,

a Bayesian farmer will form a posterior about optimal input usage:

~� 1 = � � S + (1 � � ) � � �
1 (11)

A Bayesian farmer's posterior will be a convex combination of their prior and the recommen-

dation (signal), with weights ( � = � S
� S + � � 1

; 1 � � = � � 1
� S + � � 1

) that are proportional to the farmer's

con�dence and trust in the signal. From this expression, it is clear that the weight that the farmer

places on their prior will be increasing in their con�dence ( � � 1 ) and the weight they place on

the signal will be decreasing in their con�dence. Similarly, the weight that farmers place on the

signal will be increasing in their trust in the signal ( � S). We test these predictions directly in the

following empirical analysis.
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3 Context and Experimental Design

We implemented our �eld experiment with the assistance of scientists from Department of Soil

Science at Rajendra Agricultural University (RAU). RAU is the oldest and most prestigious in-

stitution for agricultural research and extension in Bihar and has the greatest capacity to carry

out the soil testing, analysis, and derive nutrient recommendations. The study area comprised

three districts in Bihar with a predominant rice-wheat cropping system: Bhojpur, Madhubani,

and Nawada. In these districts, rice is the predominant kharif (monsoon season; June to Octo-

ber) crop, while wheat is the predominant rabi (dry, winter season; December-February) crop,

accounting for nearly 60 percent of gross sown area.

At the time of the study, the state of Bihar was lagging behind other states in implementing

its SHC scheme (Gujarat, for example, had already claimed testing of all plots in the state). In our

baseline survey, only 2 percent of respondents reported ever having their soil tested, although 95

percent indicated that they would like to have it tested, suggesting high demand for the program.

The reasons cited for wanting to get their soil tested were to learn the appropriate quantity of urea

to use (17%), which other fertilizers to use apart from urea (27%), when to apply fertilizers (6%),

and all of the above (50%). The declared targets in the state were to analyze nearly 1.31 million

soil samples and provide more than 11 million SHCs to farmers in Bihar within three years.

3.1 Sampling, Randomization, and Treatment

To select households, we used a multistage sampling approach. In the �rst stage, we selected

three districts with a predominant rice-wheat cropping system from which to sample house-

holds: Bhojpur, Madhubani, and Nawada. In the second stage, we randomly selected 16 high-

rice-producing blocks (subdistrict administrative units) across the three districts, with the num-

ber of blocks drawn from each district proportional to the share of rice production attributable to

that district: seven blocks were selected from Bhojpur, 6 from Madhubani, and 3 from Nawada.

Treatment was randomized at the village level within each of these 16 blocks (strata). Within

each block, we randomly selected 2 villages from which to draw households for treatment and
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1 village from which to draw households for a control group. Withing each of the 48 villages,

we randomly selected 18 rice- and wheat-growing households from village rosters prepared by

enumerators through door-to-door listing. The baseline sample therefore included 864 farmers,

of which 576 are treatment farmers and 288 are control farmers.

Figure 1 illustrates the timeline of the SHC intervention and data collection activities. In April

and May of 2014 we conducted a baseline survey with all households and collected information

on household and farm characteristics and the use of farm inputs for the kharif rice crop harvested

in 2013. During the baseline survey, we elicited survey based con�dence measures and subjective

beliefs regarding optimal application rates of urea and DAP for the upcoming 2014 kharif rice

crop. We also collected information about farmers' past experience with soil testing and their

stated willingness-to-pay for soil tests. The belief elicitation process and willingness-to-pay are

explained in greater detail in Section 3.1.1 below.

In May and June 2014, following the baseline survey, we collected soil samples from one plot

of every treatmentfarmer. Farmers nominated their two most important plots and one was ran-

domly selected for testing. 11 Eight graduates from local agricultural universities were selected

to serve as extension agents for this study. These agents received a three-day training from ex-

perts at RAU and the regional o�ce of the Indian Council of Agricultural Research on the proper

procedures for collecting soil samples for subsequent testing. The agents then visited each of the

treatment households, collected soil samples according to the recommended practices, and de-

posited them with the soil testing laboratory at RAU. This execution of soil testing and its delivery

to the laboratory was meant to simulate the intended execution of the central government's SHC

program, albeit at an individual plot level rather than on a gridded basis. 12 We discuss further

details of the soil testing process and the development of recommendations in Section 3.1.2.

Technical delays in conducting all soil tests prevented us from distributing the SHC and as-

sociated recommendations prior to the planting of the 2014 kharif paddy rice crop. We therefore

shifted the experiment to the rabi season of 2014-15, and had fertilizer recommendations pre-

pared for the wheat crop, the main crop of this season. Because the baseline survey was focused

11Slightly more than half of the sample farmers (54%) reported having more than one plot.
12The national program collected samples in 2.5 hectare grids in irrigated areas and 10 hectare grids in rainfed

areas.
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primarily on rice, in November 2014, prior to distributing the SHCs with soil test results and

recommendations to treatment farmers, we carried out a midline survey to collect information

on cultivation practices and fertilizer application in the wheat crop of the previous rabi season

(2013-14), as well as the intended application in the coming season. The great majority of farmers

in the study area and in our sample also cultivate wheat during the rabi season.

Following the midline survey, SHCs (printed in Hindi) were hand-delivered by the eight �eld

agents to treatment farmers, weeks before the sowing of the wheat crop, when most farmers had

yet to purchase fertilizers. The agents were trained in the proper interpretation and explanation

of the SHC to farmers. Finally, an endline survey on fertilizer application rates was conducted

after the rabi 2014-15 wheat harvest (June-July 2015). Together, the data includes a household

panel of agricultural practices and fertilizer application in both the kharif rice and rabi wheat

crops that were harvested in 2014 and 2015.

An additional follow-up survey was conducted to elicit farmers' WTP for zinc (June-July

2015), following the endline survey. A simpli�ed Becker-DeGroot-Marschak mechanism was im-

plemented, allowing us to compare zinc valuation by farmers whose land is zinc de�cient with

zinc valuation by those whose land is zinc su�cient (both in the treatment group), as well as zinc

valuation by those whose speci�c land characteristics are undetermined (that is, farmers in the

control group).

We note several aspects of the study implementation and their implications for our analysis.

First, we opted not to test soils for farmers within control villages, due both to the cost of sam-

pling and testing soils as well as concerns that { since the research design required that they be an

un-informed control { not receiving the SHC after testing could diminish their future trust in soil

health card programs. Consequently, since we do not know what the fertilizer recommendations

would have beenfor farmers in the control villages, we are unable to directly compare whether

farmers in treatment villages move in the direction of the recommendations relative to farmers

in the control villages. Rather, we are only able to compare the levels of fertilizer use across treat-

ment and control groups. Second, as previously mentioned, the original goal was to provide

farmers with recommendations for their paddy rice crop in the kharif 2014 season, but as previ-

ously mentioned unforeseen technical delays imperiled that original goal and forced us to delay
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delivery of the SHCs until later in the year, prior to the planting of the rabi wheat crop. All of the

farmers in our sample have experience growing wheat during the rabi season, though roughly

85% do so in any given season, implying that roughly 15% of the farmers in the original sample

were ultimately excluded from the �nal sample due to not satisfying a critical inclusion criteria.

Finally, while the original treatment sample consisted of 576 farmers, the research team failed to

collect soil samples from 79 of these farmers, due to a combination of technical reasons (samples

that were too small or contaminated) and lack of cooperation in a handful of cases. The enumera-

tors were reluctant to visit these farmers to collect endline data without being able to also provide

them with SHCs. This only a�ected the size of the treatment group, by de�nition, and resulted

in lower availability of endline data in that group (data is available for 497 treated farmers, or

86% of the original treatment sample). To account for any possible bias stemming from these and

other potentially unobservable di�erences, we employ the bounding approach of Lee (2009) to

construct upper and lower bounds for the estimated treatment e�ects (additional details are dis-

cussed in Appendix A). The initial sample size provided 80 percent statistical power to identify

e�ects of 0.25â€“0.5 standard deviations in fertilizer application rates, depending on the range

of intracluster correlation (ICC) that were in the observed range in the baseline data. Due to the

technical delays described above, the sample size decreased in the treatment group following the

baseline. Previous �ndings in Corral et al. (2020) and Harou et al. (2022) These e�ect sizes fall

within the range of positive outcomes found in many studies of education interventions. 13

3.1.1 Prior belief elicitation

During the baseline survey, we collected farmers' prior belief distributions about optimal fertil-

izer application rates (urea and DAP) in the upcoming 2014 kharif rice season using hypothetical,

visually-aided elicitation method. 14 Farmers were asked to allocate beans across bins according

13Original power calculations preceded endline data analysis. We assumed a test size of 5 percent and 80 percent
power. We set sample sizes of 48 villages across 16 blocks, with 18 households per village, consistent with the re-
search design for the original study population. We used ICCs of 0.25, 0.15, and 0.02, corresponding to the observed
baseline ICCs of urea, DAP, and MOP use, respectively. Under these assumptions and ICCs, the sample size was
su�cient to detect e�ects of 0.5, 0.4, and 0.25 standard deviations for urea, DAP, and MOP, respectively. These e�ect
sizes are arguably conservative, as they do not account strati�cation which may increase precision.

14The usage of incentives in belief elicitation requires an objective measure in which to benchmark the reported
beliefs. In our context, we are constrained by the non-veri�ability of the true optimal application rate, and therefore
we are unable to elicit beliefs with incentives. Nevertheless, there is not currently systematic evidence that incentives
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to how likely they think that each fertilizer application rate bin would lead to the highest yields on

their primary agricultural plot. Whereas much of the early work using similar visually-aided ex-

periments to elicit subjective beliefs avoided explicit references to probability or likelihood (e.g.,

due to idiosyncratic di�erences in the interpretation these terms), we followed the example of

Delavande and Kohler (2009) and explicitly framed our experiment in probabilistic terms. In or-

der to minimize the risk of confusion or idiosyncratic di�erences in interpretation, we attempted

to ensure that all respondents began the experiment with a comparable baseline understanding

of probability. Prior to initiating the elicitation, enumerators gave farmers a brief introduction to

the fundamentals of probability to help them conceptualize the subsequent experiment. Farm-

ers then evaluated a series of �ve practice questions that tested their comprehension of subjective

probabilities and their ability to allocate 20 beans to represent these probabilities.

After participants were comfortable representing probabilities with the beans, they were asked

to allocate 20 beans to represent their subjective beliefs regarding the optimal urea and DAP ap-

plication rates (in kg per katha) for the upcoming kharif season on their primary rice-growing

plot. 15 The bins of fertilizer application rates were predetermined based on conversations with

farmers and extension agents in the region. The DAP support consists of 5 bins spread over the

empirical distribution of DAP application rates while the urea support consists of 7 bins spread

over the empirical distribution of urea application rates. We chose varying bin sizes in order to

cover the whole empirical support of fertilizer use while allowing for variation where the ma-

jority of application occurs and control for the mean of the subjective beliefs distributions in all

regressions.16

Eliciting the beliefs distributions entailed two questions for each bin. Before starting, respon-

reduce measurement error or improve truthful reporting of beliefs in non-political domains (Haaland et al., 2022).
Using a method similar to ours, Delavande et al. (2011) suggest that answers to hypothetical beliefs elicitation ex-
periments such as this are reasonable, and therefore do not require incentives. While recent experimental evidence
�nds some evidence for hypothetical bias due to risk aversion using non-incentivized beliefs-elicitation methods
(Harrison, 2016), we present results controlling for risk aversion and discuss the implications of hypothetical bias in
our results.

15Local farmers are accustomed to using katharather than hectares in discussing fertilizer amounts. A katha is a
local unit of land area, of which there are about 80 in a hectare.

16Delavande et al. (2011) conduct experiments to test the sensitivity of subjective distributions to a variety of
elicitation methods and �nd that results are generally robust across bin count, predetermined versus self-anchored
support, and the number of beans to be allocated. However, accuracy increases by including more bins and beans
without a marked increase in the cognitive burden on respondents.
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dents were reassured that there were no incorrect answers and that we were only interested in

their thoughts regarding optimal fertilizer use. Speci�cally, for each bin, respondents were asked:

Do you think that this range of total urea (DAP) applied throughout the season could

result in the maximum possible yield in the upcoming season on your primary rice-

growing plot? If yes, what is the likelihood that this range of application rates will

result in the maximum possible yield in the upcoming season?

After answering these questions for each bin, respondents were allowed to reconsider their choices

and re-allocate beans accordingly, using the entire support and all beans.

Figure 2 shows the range of values for urea and DAP application rates (kg per katha), respec-

tively, and the proportion of total beans (or probability) allocated to each bin. The �gures show

that some probability is allocated over the full support for both fertilizers, though a relatively

small share of the total probability is placed on the highest possible values for both urea and

DAP. The slight skewness may be attributed to local beliefs about the amount of urea that results

in crop failure. There is no apparent bunching at particular values of the distribution, and most

bins have over 15 percent of respondents believing that there is at least some possibility that the

corresponding range of fertilizer application will result in the highest yields.

From the sequence of responses, we calculate the �rst and second moments for each individu-

als' subjective beliefs distribution assuming that the allocation of beans across bins approximates

a stepwise uniform distribution (Attanasio and Augsburg, 2016). The mean and standard devia-

tion of the elicited beliefs are used as proxies for the corresponding expectation and variance of

the farmers' true fertilizer application belief distributions prior to receiving soil testing ( � 1 and

� 2
� 1

, respectively). We treat farmers' con�dence as a measure of dispersion of their prior beliefs

(� � 1 = 1
� 2

� 1

).

Figure 3 shows the relationship between actual fertilizer application rates during the 2014

kharif season and the elicited expectations (mean values) of the subjective beliefs distributions

for urea and DAP. In general, there is a high correspondence between elicited expectations of

optimal fertilizer use and actual behavior: expectations of the beliefs about optimal urea and

DAP are nearly the same as actual application rates in the season immediately subsequent to the
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elicitation of these expectations. This similarity provides credible evidence that the elicitation

procedure captured meaningful information about farmers' beliefs.

In addition to subjective beliefs, we asked questions that provide survey based measures of

relative con�dence. The �rst question asks: How often do you have doubts about agricultural prac-

tices? The second question asks: Given the same soil quality and access to inputs, how would your

yields compare to others in your village?For both questions, farmers respond on a Likert scale cor-

responding to judgments from \much less than others" to \much more than others." From this

scale, we construct a measure of con�dence from their incidence of doubts that is equal to one

if farmers have considerably fewer doubts relative to their peers. Similarly, using their relative

ability responses, we construct a binary measure equal to one if they responded that they would

have much higher yields relative to their peers.

The subjective beliefs we collected pertained to the kharif season rice crop, as mentioned

above, but technical delays in the preparation of SHCs forced us to focus our experiment on

the subsequentrabi season wheat crop. While we have not measured the strength of farmers pri-

ors for the wheat crop, we rely on measures of these priors for the rice crop as a proxy for the

strength of the wheat crop priors. Empirical con�dence experiments �nd that within-agent con-

�dence tends to be highly correlated across tasks (Klayman et al., 1999) and that empirical mea-

sures of overcon�dence exhibit positive correlation within person (Stango and Zinman, 2020).

Given the similarity in experimental tasks in the present study, and that nearly all farmers in our

sample have more than ten years of experience with both crops, we believe that con�dence in

beliefs for fertilizer application for the kharif rice crop is a reasonable, though imperfect, proxy

for underlying con�dence in beliefs for fertilizer application for the rabi wheat crop.17 Table 1

shows that the dispersion (SD) in beliefs for both urea and DAP are highly positively correlated,

providing some evidence that con�dence is correlated across di�erent fertilizers for the same

crop. Further, the dispersion measures (precision of one's expectations) are correlated with our

survey measures con�dence based on relative performance (i.e., the frequency that farmers have

doubts about agricultural practices relative to their peers, or their potential yields compared with

17Note that we do not suggest that the expectationof the optimal fertilizer application rate for the rice crop would
be a reasonable proxy for the expectationfor wheat crop. Consequently, we are not suggesting that the locationof the
distributions would be roughly the same { only that the distributions should be roughly the same shape.
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neighbors with similar soil quality), suggesting that we are capturing heterogeneity in underlying

con�dence. The positive

3.1.2 Soil Tests and Recommendations

The soil samples that were collected were analyzed using wet chemistry methods by soil scientists

at RAU. Tests included the levels of three key macronutrients available in the soil { nitrogen (N),

phosphorus (P), and potassium (K) { as well as organic carbon content, electrical conductivity (to

measure soil salinity), and soil pH (i.e., whether the soil is alkaline, acidic, or neutral). Because

Bihar soils are widely believed to su�er from sulfur (S) and zinc (Zn) de�ciencies, and because

both of these micronutrients are considered to be important for soil health and crop yields, we

included this additional information in the laboratory analysis and SHCs. 18

Based on the soil analyses, scientists at RAU generated plot-speci�c SHCs reporting soil nu-

trient composition (i.e., the levels of various nutrients and comparison relative to some threshold

level) and provided recommendations for the application of macro fertilizers including urea (the

main source of N), DAP (the main source of P), MOP (the main source of K), and micro fertilizers

including Sulphur and zinc.

Urea and DAP are very commonly used by farmers in the area (all farmers in our sample made

use of them), while MOP is less commonly used (40% of the farmers in our sample made use of it

at baseline). While all three fertilizers are subsidized by the government, urea is the most heavily

subsidized, costing around Rs. 5 / kg, with DAP and MOP costing around 8 and 5 times more

per kg, respectively (subsidies for these two fertilizers have been scaled back in recent years).

An example of the SHC (in Hindi) is presented in Figure 4. The front side of the SHC con-

tained information on soil nutrients and their measured levels, categorized as low (de�cient),

medium (within the acceptable range), or high (excessive), while the back side of the SHC pro-

vided farmers with the plot speci�c recommended application rates of di�erent nutrients (N, P,

and K), speci�c fertilizers (urea, DAP, and MOP), and a few micronutrients (Zn and S) to apply

to their rabi wheat crop.

18In addition to all of the above, the national program also provides information on the availability of iron (Fe),
copper (Cu), manganese (Mn), and boron (Bo) in the soil.
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A complicating factor in the determination of fertilizer application recommendations is that

they depend on the desired yield, which could vary by crop, variety, access to supplemental irri-

gation, and other factors. One way to think about these recommendations is that they represent

the nutrient requirements of crops attaining a certain level of yield. Calibrating the recommenda-

tions is therefore challenging. The typical practice in Bihar is to calibrate the recommendations to

a �xed yield rate (in our speci�c case, 4 tonnes per hectare). To simulate the public program, we

followed the same practice. The average wheat yield in our sample at the time of project baseline

was 3 t/ha, 25 percent lower than the target yield used for the recommendations. Although it is

possible that farmers could have perceived the target yield to be unattainable and attempted to

re-calibrate the recommendations based on their own experiences and perceptions of their own

yield potential, we maintain the assumption that they view the SHC as an authoritative source

on appropriate fertilizer application rates.

Table 2 compares treatment farmers' self-reported planned fertilizer application rates (Columns

1-5) in the 2014-5 wheat season (collected prior to receiving the SHC) to the recommendations

(i.e. calibrated uniformly to 4t/ha, Columns 6-10). The average recommendations for the use

of urea and DAP were 22 and 46 percent higher, respectively, than farmers' planned application

rates. The recommended use of MOP (potash) was more than six fold larger than planned use,

related to the fact that only 38% of farmers in our sample planned to use MOP at all (Column

1). Over 70% and 80% of farmers received a recommendation to increase their use of urea or

DAP, respectively, while all farmers were told to increase their use of MOP (Column 11). Figure 5

plots the distribution of these di�erences between planned and recommended application rates

of urea and DAP.

In addition to the major fertilizers, the application of micro-nutrients was found to be very

rare among sample farmers. Although one in four soil samples were deemed to be de�cient in

zinc and sulfur, few farmers reported having applied zinc or sulfur in the previous season. 19

19Once applied, zinc remains available to crops for up to three cropping seasons, though marginal returns on the
application of zinc are higher if it is �rst applied to the rice crop in a rice-wheat cropping system.
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3.2 Summary Statistics and Balance

Table 3 presents comparisons of baseline attributes between control farmers (Column 1), treat-

ment farmers that received SHCs (Column 2) and treatment farmers that did not receive SHCs

(Column 3) and were also not surveyed at endline. Columns 4-6 report p-values of t-tests com-

paring each pair of these three groups. The average farmer in our sample is around 45 years of

age, and 60%-70% of the sample are literate. The average stated willingness to pay for a SHC was

about USD 1.5. Trust in existing extension services is low amongst farmers as 60% of farmers

report not trusting information from extension agents until there is evidence that it is e�ective. 20

While treated and control farmers were mostly similar statistically, treated farmers were a little

more likely to be female (9 vs 5 percent points). To ensure against the possibility that this dif-

ference might bias the interpretation of our results, we control for gender in all regressions, and

�nd this to have little e�ect. An F -test of joint orthogonality fails to reject that treatment is jointly

orthogonal to all baseline variables (p-values reported at the bottom of the table). 21

Treatment farmers for which soil tests were collected incorrectly or failed to be collected are

very similar to the rest of the treatment sample in terms of soil properties, baseline fertilizer

use, yields, as well as their priors. However, they are somewhat more likely to be female and

less likely to be literate. Since our ITT estimates of the e�ect of SHC distribution compare the

samples in Columns 1 and 2 (no endline data is available for farmers in Column 3), in order to

account for any possible bias stemming from these and other potential unobservable di�erences,

we employ the bounding approach of Lee (2009) to construct upper and lower bounds for the

estimated treatment e�ects (additional details are discussed in Appendix A).

In Table 4 we examine any remaining attrition stemming from failure to �nd or interview

other farmers at endline. Column 1 shows that overall, 10 percent of households could not be

matched to the endline data due to such di�culties. Column 1 shows, however, that attrition

does not di�er across control and treatment farmers. Since the SHC we distributed were speci�c

20The measure of trust is a binary question: I will not trust new information from extension agents until there is clear
evidence that it is e�ectivevs I will trust new information from extension agents until I have clear evidence that it is not e�ective

21To test joint balance, we implement a conventional asymptotic test, and regress the treatment indicator on all the
variables included in Table 3 and strata dummies, and with standard errors adjusted for the clustering at the village
level, re
ecting the clustered nature of our sampling design.
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to wheat cultivation, our sample is farther restricted to (the roughly 85% of) farmers that indeed

cultivated wheat in the primary plot. In column 3, we show that the likelihood of cultivating

wheat also did not di�er across control and treatment farmers. Our �nal sample for estimating

e�ects on wheat cultivators consists of 613 farmers.

4 Impacts of the SHC on Fertilizer Application

In this section, we �rst estimate the causal impacts of the SHC distribution on fertilizer use in

Section 4.1. We begin by estimating the impacts on fertilizer application rates in the 2014-15 rabi

season for the three main macro-fertilizers: Urea, DAP and MOP, as well as the timing of urea

application. We discuss the results and potential reasons for the muted impact of the intervention

in Section 4.2. Finally, in Section 4.3, we report an analysis of the intervention on demand for zinc,

a micronutrient that is rarely used by farmers in the sample.

4.1 Urea, DAP, MOP

To estimate the e�ects of SHC distribution on endline applications of the three macro-fertilizers

and the timing of urea application, we estimate the following regression:

yiv = � 0 + � 1Tv + X
0

iv 
 + � b + � e + � iv (12)

where yiv is the endline measure for the outcome of interest for farmer i in village v, Tv is a binary

treatment indicator for being in a village that received the SHCs, and X i is a vector of individual

and household baseline characteristics (gender, age, literacy, landholding size, and size of the

treated plot). We also include block (strata) �xed e�ects ( � b) and enumerator �xed e�ects ( � e)

in the regression, and adjust standard errors for the clustered nature of the intervention (at the

village level { the unit of randomization). As discussed above, the sample includes all farmers

who planted wheat in the target plot at endline, and we report Lee bounds for our estimates in

order to account for failure to collect soil samples and endline data from some of the treatment
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farmers.22

Our primary outcomes are the application rates of the three major macro fertilizers: urea,

DAP and MOP, measured in kg per hectare. This allows us to measure the e�ect of the informa-

tion treatment on fertilizer use along the intensive margin. While urea and DAP are used by all

farmers, only about 30% of sampled farmers applied MOP on their wheat crop. We therefore

also estimate impacts on a binary indicator of MOP use to capture the e�ect of the information

treatment on MOP use along the extensive margin. In addition, we examine e�ects on the prac-

tice, recommended on the SHC, of applying half of the overall amount of urea during sowing

to improve fertilizer use e�ciency. Unlike other SHC recommendations, this practice did not

necessitate changes in overall fertilizer application rate, but only in its temporal distribution.

Table 5 presents estimates of treatment e�ects on the intensive margin of fertilizer use, the

extensive margin of MOP use, and practice adoption. In addition to the point estimates, we report

95% con�dence intervals as well as the 95% con�dence intervals of the Lee bounds. Overall, we

�nd evidence that SHCs had a small impact on fertilizer application levels. 23 The point estimate

on urea use is signi�cant at the 5% level and suggests an increase of 10 kg/ha or about 5% of

the mean level of urea use among farmers in the control group. For the remaining fertilizers,

the point estimates are of only a modest size (roughly 5% and 10% of mean levels of DAP and

MOP usage, respectively), and are not signi�cant. There is a positive e�ect on the probability

of farmers using MOP, with a larger proportional impact (15%) that is marginally insigni�cant.

However, it should be noted that the Lee intervals of all four impacts include zero. 24

At the bottom row of Table 5, we report the the potential impact of the SHCs that would have

occurred if all treatment farmers followed the recommendations to the letter. 25 For urea usage, the

estimated e�ect is 40% of the potential e�ect (10 kg/ha relative to about 25 kg/ha). For all other

indicators, the e�ect is lower than 10% of its potential. Thus, the estimated impacts are relatively

modest to what would have been possible under full compliance to the recommendations.

22We did not detect di�erential rates of wheat planting by treatment and therefore restrict the estimation to wheat
farmers. Of the 743 farmers interviewed at endline, roughly 84% planted wheat (column 3 in Table 4.)

23We note that the results are insensitive to the inclusion or omission of the controls or the enumerator �xed e�ects.
24De�ned to extend from the lower end of the 95% con�dence interval of the lower Lee bound to the upper end

of the 95% con�dence interval of the upper Lee bound.
25To simulate these impacts, we replace each treated farmer's application with the (un-calibrated) recommended

level and then re-estimate the regression.
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In contrast, we do �nd stronger evidence of an e�ect of the SHC on the recommended practice

of applying half of the total urea amount at the time of sowing. The share of farmers in the

treatment group that followed this practice increased by 7 percentage points (p.p.) relative to the

control farmers, a 33% increase over a control mean of 20 p.p. This e�ect is signi�cant, and even

the lower lee bound is positive and signi�cant.

4.2 Discussion

These results provide evidence that farmers respond partially to the recommended quantities on

the intensive margin. The e�ect appears to be strongest for urea, and less so for MOP. Our �nd-

ings are consistent with previous interventions that provided soil tests and recommendations to

farmers and �nd relatively small impacts on adoption and fertilizer usage when they are not cou-

pled with vouchers or in-kind grants (Corral et al., 2020; Harou et al., 2022). We further reiterate

that the average estimated treatment e�ects su�er from di�erential attrition and are not robust to

Lee bounds corrections. There is, however, strong evidence that farmers adjust the timing of their

urea application in line with the information on the Soil Health Cards. Taken together, SHCs can

be succesful at delivering information to farmers, though further analysis is needed to identify

why farmers respond to certain pieces of information and not others.

Further, we note that the treatment e�ects on the intensive margin combine farmers that re-

ceived recommendations to increase usage with those that were recommended to decrease usage

and therefore may understate impacts of the intervention. Due to the experimental design, we

cannot provide causal evidence on heterogeneity in updating based on the direction of farmers'

recommendation. However, in Section 5, we investigate how responsive treatment farmers were

to the recommendations and document farmer characteristics that are correlated with how much

individual farmers update in response to information.

4.2.1 Farmers' Comprehension of the SHC Content

One explanation for the muted treatment e�ect is that farmers may not have understood or taken

note of the recommendations. A lack of understanding has been argued to be a inhibitor on the
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cards as has been found in other areas in India (Cole and Sharma, 2017). To examine whether

farmers understood the recommendations, we asked farmers in the endline survey whether they

had applied more or less urea, DAP and MOP than the recommended amount. If they could

correctly recall the amounts on the card, then their answers to this question should be re
ected

in their reported application rates relative to the recommendations. In Table 6, we cross-tabulate

their answers with the di�erence between the actual rate of application and the recommenda-

tion in the SHC. In the case of urea, the mean value of the di�erence between actual and rec-

ommended application is positive for self-reported over appliers, and negative for self-reported

under-appliers, suggesting farmers had a decent grasp of the recommendations. This is less clear-

cut for DAP and MOP, but most farmers under-applied these fertilizers and have also correctly

indicated this (indicated by line 5 in the table). This suggests that farmers had at least some sense

of the content of the SHC and the recommendations. It also suggests that they mostly referred

to the un-calibrated recommendations when making reference to the cards.

4.2.2 Self-Reported Reasons for Not Following the SHCs

A second potential explanation for the stronger evidence we �nd for increases in urea usage in

comparison to DAP and MOP may be related to their costs. As noted above, while urea continues

to be highly subsidized in Bihar, subsidies in DAP and MOP declined in the years prior to the

intervention, resulting in steep price di�erences between urea on the one hand, and DAP and

MOP on the other hand. This hypothesis is consistent with farmers' self-reported reasons for

applying more or less than the recommended levels, summarized in Figure 6 (Table 7 presents

the full breakdown). High costs (high prices or liquidity constraints) were mentioned as reasons

for applying less than the recommended amount by only 12% of under-appliers in the case of

urea, but by 38% in the case of DAP and 36% in the case of MOP. Hardly any farmers cited low

costs as a reason for applying more than the recommendation.

These results are consistent with those found by Harou et al. (2022), who show that plot-

speci�c soil tests increased fertilizer usage from low baseline adoption in Tanzania only when

accompanied by vouchers for purchase. In our case, the SHCs may have increased the usage

of low cost urea but did not appear to have substantial impacts on the much more expensive
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(about 8 times more expensive than urea) DAP, and only a marginal e�ect on MOP (which is 4-5

times more expensive than urea). These results highlight the potential downside of providing

information that targets multiple inputs when farmers face di�erent costs across inputs, with the

net e�ect being a farther increase in the overall imbalance of the fertilizer mix, which is skewed

towards urea to begin with.

And yet, the clearly dominant factor cited by farmers for not complying with the recommenda-

tions was their con�dence in the accuracy of their own practices. This is true for farmers applying

both more or less than the recommendations. Ninety six percent of the farmers who reported

having used more than the recommended amount of urea cite belief based reasons including that

the usual amount they use is correct (66%) or that using less will reduce yields (30%). Similarly,

72 percent of those who used less than the recommended amount of urea said they did so be-

cause they did not want to change their behavior from previous seasons based on their beliefs

that the usual amount they use is correct (58%), yields or returns would not increase by using

more (9%), or using more would damage the crop (5%). Similar responses were observed for

DAP and MOP. These results motivate our analysis in Section 5, which examines to what degree

the level of con�dence displayed by farmers was indeed correlated with their demand for and

responsiveness to the SHCs.

4.3 Willingness-to-pay for Zinc

The SHC also provided information on levels of zinc in the soil as well as recommendations

on zinc amendments. While zinc de�ciency is common in the area, few farmers use it. In our

sample, 38 percent of farmers were zinc de�cient, though only 15 percent planned to apply zinc

in the 2014 rabi season. To examine both whether the soil health card a�ected demand for zinc

and how demand was correlated with the contents of the SHC, we elicited farmers' willingness

to pay (WTP) for zinc using a simpli�ed Becker-DeGroot-Marschak (BDM) valuation elicitation

exercise following the conclusion of the endline survey (Becker et al., 1964).26 See Appendix B

26The BDM mechanism is a widely used incentive-compatible procedure for eliciting the WTP for a good or a
service (Berry et al., 2020). In a BDM, each subject submits their bid to purchase the good. Afterwards, a random
sale price is drawn from a distribution of prices ranging from a very low value to a price greater than the anticipated
maximum possible WTP among bidders. If the random price is less than or equal to their bid, the subject receives a
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for further details on the implementation and sample.

In Figure 7, we report the mean WTP elicited across various subgroups and 95% con�dence

intervals to determine whether the SHC a�ected farmers' willingness to pay for zinc. We report

the mean WTP separately in the district of Madhubani, where there is no control group. Panel

(a) compares farmers in Nawada and Bhojpur that received the SHC (N=165) to control farmers

(N=67) in the districts of Nawada and Madhubani. The SHC group pools treatment farmers that

received an SHC that showed that their soil was de�cient in zinc (N=57) as well as those that

were not de�cient (N=108). WTP is higher in the treatment group, though the di�erence is not

statistically signi�cant. In Panel (b), we then disaggregate the treatment group into (1) farmers

that had zinc de�ciency and received a reminder of the contents prior to the elicitation, (2) farmers

that had zinc de�ciency and did not receive a reminder of the contents prior to the elicitation,

and (3) those that were zinc su�cient. Mean WTP is higher amongst treatment farmers that

were zinc de�cient (mean=42.9) and that were zinc su�cient (mean = 40.7) relative to the control

(mean = 37.5), though none of the di�erences are statistically signi�cant. Panel (c) shows the

comparison in Madhubani (with no control group), where mean WTP is higher on average than

in the other two districts, though none of the di�erences are statistically signi�cant. Overall, these

comparisons suggest that the SHC's zinc information had very little e�ect on farmers' valuation

of it.

5 Responsiveness to the SHCs Among Treated Farmers

We now turn to how farmers incorporate the recommendations in their fertilizer usage. To study

how farmers update, we follow a similar strategy to what has been used recently in survey exper-

iments in a variety of contexts. 27 In our context, rather than estimating learning using an elicited

posterior belief, we observe the actual input decision of the farmer ( yiv ) and take it to represent

their mean of their posterior belief distribution. Similarly, their planned input usage, elicited

unit of the good and pays the random price rather than their bid. If the random price is greater than their bid, the
participant is unable to purchase the good. The dominant strategy for the bidder is to truthfully reveal his or her
preferences and therefore the BDM is incentive-compatible.

27Examples include belief updating about house prices (Fuster et al., 2020), salaries (Cullen and Perez-Truglia,
2022), and in
ation (Cavallo et al., 2017; Coibion et al., 2018).
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prior to receiving the SHC, is taken as the mean of their prior belief distribution. In a model of

Bayesian learning, as shown in Appendix 2, a Bayesian farmer's updated mean of their posterior

belief about the optimal input application rate is a convex combination of the mean of her prior

belief and the information revealed in the SHC (signal). 28

Figure 9 illustrates the degree to which farmers updated their endline fertilizer application

after receiving the fertilizer recommendations via the SHC (Posterior - Prior) as a function of

the di�erence between their planned fertilizer application rates and the recommendations (Sig-

nal - Prior). 29 The former re
ects an adjustment from prior to posterior beliefs, while the latter

re
ects the deviation in the information from the prior { a measure of how \surprising" the in-

formation might have been. We report the estimated coe�cient � from the equation Posteriori �

Priori = � (SHCi � Priori ), where � is a parameter that represents farmers' responsiveness, or

the weight placed on the signal, SHCi is the recommended fertilizer application rate, and Prior i

and Posterior i are the means of farmer i 's respective belief distributions represented by their

planned fertilizer usage and their endline fertilizer usage. 30 The y-axis plots the revision in usage

(the di�erence between the posterior and their prior) and the x-axis plots the di�erence between

the recommendation and their prior. We report binned scatter plots with a linear regression �t

line of the estimated relationship for urea, DAP, and MOP (both including and excluding farmers

that use any MOP).31

Panel (a) in Figure 9 depicts the responsiveness in urea in urea application for all farmers in

the treatment group that planted wheat. If farmers fully reacted to the signal provided on the

SHC (placed all weight on the signal), the coe�cient would be 1. If farmers did not respond at

all to the signal, the coe�cient would be equal to zero. The relationship for urea appears to be

linear (with an estimated slope of 0.64) and is highly signi�cant ( p < 0:01), meaning that a per-

28The convex conmbination can be expressed as:Posteriori = � � SHCi + (1 � � ) � Priori , where � is the weight on
the signal and (1 � � ) is the weight on the prior.

29Treatment farmers' planned input usage was elicited using a survey just prior to receiving their SHC card and
corresponding recommendations.

30In a Bayesian learning model, this relationship assumes that the priors and the signals are normally distributed
and that the variance of the prior and signal are independent of their respective means.

31In general, the � parameter is estimated by interacting (SHCi � Priori ) with a treatment indicator while control-
ling for (SHCi � Priori ) to account for spurious reasons that subjects may revise their beliefs in the direction of the
signal regardless of whether they were shown the information. In previous studies, the magnitude of the estimated
spurious revision tends to be less than 0.10 percentage points (Cavallo et al., 2017; Cullen and Perez-Truglia, 2022;
Fuster et al., 2020).
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centage point increase in the gap between the recommendations and farmers' planned fertilizer

application rate is associated with a 0.68 percentage point increase in the gap between farmers'

endline application rate and their planned application rate. Further, the plotted relationship sug-

gests that there is not a large asymmetry in updating for positive and negative signals, though the

relationship appears to be slightly less steep for recommendations that are more than 100 kg/ha

larger than their planned usage (the dashed line). Panel (b) in Figure 9 shows that although farm-

ers that received a recommendation to decreasetheir DAP did so on average, there is less evidence

that the treatment induced the majority of farmers who received a recommendation to increase

their DAP to increase their DAP application. Farmers' response to the MOP recommendation

was both linear (slope=0.51) and highly signi�cant ( p < 0:01), similar to that of urea (Panel (c)).

When we consider the subset of farmers that actually applied MOP (N=141), the responsiveness

was higher (slope=0.62) and those that received a recommendation to decrease MOP usage did so

(Panel (d) in Figure 9). Nearly half of farmers increased their MOP usage relative to their planned

application rate when they received a recommendation to increase MOP.

Next, we next study heterogeneity in updating and the role of con�dence on responsiveness.

The model developed in Section 2 shows (equation 11) that the weight that a farmer places on the

signal (� = � S
� S + � � 1

) will be decreasing in their con�dence, or increasing in the dispersion of their

priors ( � � 1 = 1
� 2

� 1

). In order to test the model predictions, we estimate the following regression,

where � captures spurious reversion to the signal and Conf idencei is one of three measures of

farmer i 's con�dence: the standard deviation of the elicited beliefs distribution, a dummy that is

equal to 1 if farmers reported have much less doubts than their peers about input usage, and a

dummy that is equal to 1 if farmers reported that they would have much higher yields relative

to their peers if they cultivated on the same plot with equal access to inputs. 32

Posteriori � Priori = 
 + � (SHCi � Priori ) � Conf idencei + � (SHCi � Priori ) + X
0

i 0
 + � e + ui :; (13)

Posteriori is farmer i 's endline fertilizer application rate ( y1iv ), SHCi is the recommendation

shown on the SHC, and Prior i is the planned fertilizer usage stated prior to receiving the SHC

32We only conduct this exercise for urea and DAP as we did not collect beliefs for MOP.
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(y0iv ). As before, � e are enumerator �xed e�ects, and X i 0 are controls that include access to credit,

plot size, experience, literacy, and age. Standard errors are clustered at the village level

Table 9 reports the di�erences in responsiveness in urea application by measures of con�-

dence. Using a model of Bayesian updating, less con�dent farmers, should place more weight

on the SHC recommendation. This is con�rmed in column 2. A one standard deviation increase

in belief dispersion increases the weight that farmers place on the SHC signal by 14 percentage

points. Moving from the bottom quartile to the top quartile of the dispersion of farmers' priors in-

creases the weight on the recommendation by more than 23 percentage points. In columns 3 and

4, we report similar results using the the interactions with survey based measures of con�dence.

Farmers that respond that they would get much higher yields than others given the same inputs

have a 17 percentage point less weight on the recommendations and those that report having

much less doubts than their peers about input usage place 22 percentage points less weight on

the recommendations. The results broadly con�rm the model's prediction that more con�dent

farmers place less weight on the signal.

Table 10 reports the di�erences in responsiveness in DAP application by measures of con�-

dence. We �nd a similar pattern of estimates as for urea, but the interaction e�ects, while sizable

and in the expected direction, are imprecisely estimated. The estimates suggest that con�dence

might have played a role in the overall low level of responsiveness of DAP usage to the SHC

recommendation, but are inconclusive.

We also assess the extent of heterogeneity in farmers' responsiveness to the SHC across a num-

ber of other farmer characteristics including trust, WTP for soil tests, literacy, credit constraints,

and wealth for urea (Appendix Tables C1 and C2). We do not �nd a meaningful e�ect of baseline

trust on responsiveness, though as we show below, trust seems to be correlated with demand for

information. It should be noted however that our measure of trust was collected in the baseline

survey and may have changed between when it was collected and when farmers received their

soil test. Given these caveats, we cannot rule out that trust has an impact on information respon-

siveness, but we do not �nd strong evidence for its e�ect in this context. Further, female farmers

place more weight on the urea recommendations. While we don't �nd an e�ect of prior credit

access, wealthier farmers place a signi�cantly higher weight on the recommendations, suggest-
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ing that resource constraints may restrict responsiveness even for a highly subsidized fertilizer.

Finally, for DAP, farmers with access to credit in the baseline tend to respond less to the recom-

mendations.

In short, when presented with new soil quality information and recommendations, farmers

update their input usage in a Bayesian manner, by revising their input usage towards the rec-

ommendations they receive and do so more when they are are less con�dent. This is true using

both elicited measures of prior uncertainty as well as survey based measures of con�dence. This

updating is particularly strong for urea, and not signi�cant for DAP, which may re
ect a higher

willingness to experiment with urea due to lower costs, or it may be easier to change the dosing

of urea relative to DAP depending on what was available in the market.

5.1 Demand for the SHC

Figure 10 displays the distribution of the stated WTP for the SHC, asked to farmers during the

baseline survey. Overall, WTP was quite low. Thirty percent of farmers answered that they were

not willing to pay any money for SHCs. Further, 72% of farmers stated a WTP which was below

the approximately $2 charged by public facilities to perform soil health tests (prior to the intro-

duction of the SHC program) which was the price of soil testing using the available public service

at the time of the intervention. The model presented in section 3.1.1 predicts that farmers with

greater con�dence should display lower demand for the SHC recommendations.

Table 11 reports regressions of stated WTP on con�dence, trust, and literacy. In Columns

1 and 2, con�dence is measured through the standard deviation of the farmers' belief distribu-

tion regarding optimal urea application (SD urea). In Columns 3 and 4, con�dence is measured

through the corresponding measure for DAP (SD DAP). Columns 2 and 4 control for additional

farmer characteristics including wealth, and ability. The results indicate that higher levels of

dispersion in beliefs on the optimal level of urea or DAP (lower levels of con�dence) are both

associated with increased WTP for the SHC. A one standard deviation increase in urea beliefs

dispersion (0.17) is associated with an increase of $0.32 in WTP, or roughly 20% of the price of

the mean WTP. Similarly, a one standard deviation increase in DAP beliefs dispersion (0.19) is as-
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sociated with an increase in WTP of 0:41. We �nd similar results in Table 12 using survey based

measures of con�dence. Farmers that respond that they would get much higher yields than oth-

ers given the same inputs have a WTP that is 40% lower than the mean WTP and those that report

having much less doubts than their peers about input usage have a WTP that is 53% lower than

the mean WTP. Not surprisingly, literacy is also found to be positively correlated with WTP, with

an e�ect comparable to that of one standard deviation in urea belief dispersion. However, we do

not �nd evidence that trust is correlated with higher WTP.

Overall, these results lend support to the predictions of the model. They indicate substantial

levels of heterogeneity in farmers' interest in the information provided by the SHC that is corre-

lated with baseline con�dence. While the predictions on demand for information follow from a

standard model of belief updating, recent empirical evidence on information demand �nds that

agents may also vary in their taste for information, in which case farmers with higher belief pre-

cision could potentially demand information regardless of whether they plan to use it (Fuster

et al., 2020). We do not �nd evidence that this is the case in our context. One important caveat in

interpreting the results is that we cannot rule out that experimenter demand e�ects could have

in
uenced self-reported hypothetical WTP and fertilizer usage (De Quidt et al., 2018).

6 Conclusion

In this paper, we present the results from a randomized controlled trial in three districts of Bihar,

India, that provided Soil Health Cards (SHCs) to farmers based on individualized soil tests in

order to promote balanced use of fertilizers. The intervention closely mirrored the operational

approach of a large scale government soil testing program in India that intended to provide more

than 145 million SHCs to all farmers in India. We estimate modestly sized e�ects of SHCs on

fertilizer use that fall far well short of the potential impacts that would have occurred if farmers

fully complied with the SHC recommendations, even for the lowest cost fertilizer (urea). With

our most conservative speci�cation, we are not able to reject the null hypothesis of zero change

in total amount of any of the fertilizers we examine. There was, however, a relatively large e�ect

on the likelihood of applying half of the total urea at sowing, which was a practice recommended
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on the SHC and which improves fertilizer use e�ciency.

We further document signi�cant heterogeneity in beliefs about optimal fertilizer application

levels prior to receiving the SHC information. Consistent with Bayesian updating in the target

input model, we show that con�dence is associated with lower demand for SHCs and lower re-

sponsiveness to the recommendations provided on the SHCs: less con�dent farmers were more

likely to adjust their input use in the direction of the recommendations. Our results highlight the

potential role of con�dence in who is most likely to respond to expert information, with impli-

cations for targeted interventions such as India's SHC scheme as well as information provision

more generally. While a large body of literature has shown that information experiments can be

e�ective, including in the context of developing country agriculture (Fabregas et al., 2019; Haa-

land et al., 2022), our �ndings suggest that identifying and targeting low con�dence and high

marginal value of information respondents may produce the largest returns to the program's

investment, especially if there are cost constraints to providing information.
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Table 1: Correlations across alternative measures of farmer con�dence

(1) (2) (3) (4) (5)
Sd Urea Sd Urea Sd Urea Sd DAP Sd DAP

Much higher yields -0.062*** -0.063***
(0.022) (0.014)

Much less doubts -0.083*** -0.066***
(0.023) (0.019)

SD DAP 0.69***
(0.054)

Constant 0.44*** 0.50*** 0.20*** 0.36*** 0.41***
(0.035) (0.033) (0.033) (0.019) (0.021)

Observations 864 864 864 864 864
R2 0.022 0.029 0.279 0.040 0.034
Mean dep. var 0.41 0.41 0.41 0.34 0.34

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Notes: Dependent variables include the standard deviations of farmers' beliefs over urea application rates (columns
1-3) and the standard deviations of farmers' beliefs over DAP application rates (columns 4-5). \Much higher yields"
is a binary indicator equal to 1 if farmers in the baseline survey responded that they would get much higher yields
than their peers given the same soil quality and access to resources. \Much less doubts"is a binary indicator equal
to 1 if farmers in the baseline survey responded that they have much fewer doubts than their peers about farmings
practices. Controls include the mean of the farmer's distributions of subjective beliefs. Standard errors (adjusted for
clustering at the village level) in parentheses.
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Table 2: Planned fertilizer application for rabi 2014-15 vs. recommended fertilizer application
from SHC (based on 4 t/ha target yield)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Planned Recommendation Rec> Plan

Fertilizer (kg/ha) Y/N Mean SD Min Max Y/N Mean SD Min Max %
Urea 1.0 199.4 89.6 0.0 553.3 1.0 244.6 27.1 127.3 316.8 70
DAP 1.0 112.0 38.1 0.0 217.4 1.0 164.8 35.2 99.7 240.0 80
MOP 0.4 13.2 20.8 0.0 158.1 1.0 81.6 20.2 34.1 122.5 100
N 388 389

Notes: Columns 1-5 report a binary variable for whether farmers in treatment villages planned to use the indicated
fertilizer in the 2014-15 rabi wheat season, along with the mean, standard deviation, minimum, and maximum of
the planned application rates prior to receiving the soil health card. Columns 6-10 report a binary variable for
whether farmers in treatment villages were recommended to use the indicated fertilizer in the 2014-15 rabi wheat
season, along with the mean, standard deviation, minimum, and maximum of the recommended application rates
prior to receiving the SHC. Column 11 reports the share of farmers that were recommended to apply more of the
fertilizer than they had planned to apply. The sample includes only those farmers that had their soil tests successfully
processed and delivered. All values reported in kilograms per hectare (kg/ha).
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Table 3: Summary statistics and statistical balance across experimental arms

(1) (2) (3) T-test
Control Treatment No Test P-value

Variable Mean/SE Mean/SE Mean/SE (1)-(2) (1)-(3) (2)-(3)

Age 46
(0.88)

45
(0.73)

45
(1.70)

0.31 0.54 0.99

Female 0.05
(0.01)

0.09
(0.01)

0.13
(0.04)

0.09* 0.11 0.35

Literacy 0.65
(0.05)

0.69
(0.03)

0.58
(0.04)

0.45 0.32 0.09*

Trust 0.31
(0.03)

0.31
(0.02)

0.29
(0.06)

0.82 0.83 0.70

Clay/loam soil 0.74
(0.04)

0.76
(0.04)

0.80
(0.08)

0.69 0.49 0.59

Slope (
at) 0.91
(0.02)

0.92
(0.02)

0.95
(0.03)

0.88 0.28 0.34

WTP for soil test (USD) 1.60
(0.25)

1.60
(0.17)

1.8
(.36)

0.98 0.79 0.70

Mean urea beliefs 208
(15)

207
(8.4)

203
(12)

0.96 0.79 0.73

Mean diammonium phosphate (DAP) beliefs 103
(6)

103
(4.3)

91
(7.4)

0.98 0.20 0.11

Kharif 2013 urea 223
(21)

213
(16)

213
(16)

0.70 0.67 0.95

Kharif 2013 DAP 102
(5.8)

106
(4.8)

95
(8.6)

0.57 0.38 0.07*

Rabi yield 2014 (q/ha) 27
(1.30)

27
(0.99)

26
(.35)

0.74 0.92 0.59

N 288 497 79
Clusters 16 31 21
F-test of joint signi�cance ( p-value) 0.39 0.64 0.34
F-test, number of observations 785 367 576

* Signi�cant at 10% level; ** Signi�cant at 5% level; *** Signi�cant at 1% level.
Notes: Column 1 reports average self-reported measures of age, gender, literacy, trust, soil type, elicited beliefs,
average fertilizer use and realized paddy yields in 2013 for farmers in the control group. Standard errors are reported
in parentheses. Columns 2 and 3 are analogous to column 1 but include the treatment sample that had their soil
tested (column 2) and those for which the soil test was contaminated or could not be processed (column 3). Fertilizer
application rates are reported in kilograms per hectare. The p-values in columns 4-6 are for tests of the null hypothesis
that mean values across the indicated treatment arms are equal. Standard errors for the di�erences are adjusted
for the clustered nature of treatment assignment (at the village) level. Balance tests include block �xed e�ects to
account for randomization strati�ed at the block level. The p-value for the asymptotic F -test of the null hypothesis
that observations are jointly orthogonal across groups is estimated using OLS, with treatment assignment as the
dependent variable, all baseline covariates as independent variables, block �xed e�ects, and standard errors adjusted
for the clustered nature of treatment assignment.
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Table 4: Sample attrition and wheat production.

(1) (2) (3)
Attrition Attrition Plant wheat

Treatment -0.12*** -0.0088 -0.015
[-0.20,-0.045] [-0.048,0.030] [-0.075,0.044]

Observations 864 785 743
Adjusted R2 0.105 0.034 0.031
Mean dep. var 0.86 0.94 0.84

This table reports results on attrition in di�erent samples of our study. For all columns, we run the following re-
gression: Yivb = � 0 + � 1SHC i + � b + � ivb , where i corresponds to a farmer, Y is the outcome of interest. We include
randomization strata �xed e�ects and compute robust standard errors. At the bottom of the table, we report the
mean of the outcome for the control group, the omitted category in our regression. In Column 1, we use the sample
of 864 farmers who participated in the baseline survey and were not part of the treatment group that was excluded
due to contaminated soil tests. The outcome is a dummy that takes value of 1 for farmers that were interviewed
during the endline survey. In Column 2, we limit the sample to the 735 farmers that were interviewed in the endline
and the outcome is a dummy that takes value 1 for farmers who planted wheat on their tested plot. Standard errors
in parentheses: *** p< 0.01, ** p< 0.05, * p< 0.1.

Table 5: E�ect of SHC on fertilizer application rates in rabi 2014-15

(1) (2) (3) (4) (5)
Urea DAP MOP MOP=1 Urea sowing=.5

SHC 10.3�� -6.33 2.02 0.075 0.092��

[0.69,20.0] [-16.7,4.01] [-1.27,5.30] [-0.018,0.17] [0.0040,0.18]
Observations 621 621 621 621 621
Adjusted R2 0.358 0.213 0.498 0.575 0.066
Mean dep. var. 217.3 115.9 17.6 0.46 0.20
Lee Bounds - Full (95 CI) [-5.62,31.60] [-16.06,3.73] [-5.64,3.92] [-0.09,0.10] [0.03,0.20]
Benchmark 25.68 39.21 64.72 0.65 0.87

* Signi�cant at 10% level; ** Signi�cant at 5% level; *** Signi�cant at 1% level.
Notes: All columns report the estimates from a regression of endline fertilizer application rates on receipt of the
SHC as well as enumerator and block (strata) �xed e�ects. We report 95% con�dence intervals using standard
errors adjusted for clustering at the village level in brackets. At the bottom of the table, we report the mean of the
outcome for the control group and report the Lee bounds for the independent variable to take into account potential
selection into the sample that planted wheat compared to the original study sample of 864 farmers. The dependent
variable in columns 1-3 are endline fertilizer application rates (kg/ha). In column 4, the dependent variable is a
binary variable that takes a value of 1 if the farmer applied any MOP during the season and 0 otherwise. In column
5, the dependent variable is a binary variable that takes a value of 1 if the farmer applied half of the total amount of
urea during sowing and 0 otherwise.
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Table 6: Actual vs. recommended fertilizer application by farmers who self-reported over- or
under-application

(1) (2) (3) (4) (5) (6)
Actual minus Recommended (KG/Ha)

Urea DAP MOP
Self-Reported to Apply: Di�. N Di�. N Di�. N
More than recommended 23.24 118 -2.67 42 -55.73 12
Less than recommended -67.44 85 -63.02 135 -68.86 230
Recommended amount -21.40 93 -43.99 119 -44.12 54
No SHC for reference -36.61 93 -61.66 93 -65.75 93
Full sample -21.56 389 -50.36 389 -64.28 389

Notes: Di�erence between endline fertilizer use and the recommended application, disaggregated by farmers' self-
reports of how much fertilizer they actually applied relative to the amount on the SHC. The sample includes only
those farmers from treatment villages that had their soil tests successfully processed and delivered. All values re-
ported in kilograms per hectare (kg/ha). \Actual" denotes fertilizer application rates during the 2014-15 rabi season.
\Recommendation" denotes the derived fertilizer application rate recommendation from soil tests based on a target
yield of 4 tons per hectare. The self-reported evaluations of how much they applied relative to the recommendations
on the SHC were elicited during the endline survey.
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Table 7: Self-Reported Rationales for Over- and Under-applying Fertilizers Relative to Recom-
mended Application

Urea DAP Potash
Reason for over-/under-application of fertilizers Freq. Percent Freq. Percent Freq. Percent
Why used more than recommended?
Fertilizer cost is low 5 2 0 0 0 0
Using less will reduce yields 46 30 27 52 7 50
Believe the usual amount is the right amount 101 66 25 48 7 50
Why used less than recommended?
Fertilizer cost is high 7 5 62 31 86 27
Does not have enough money 9 7 14 7 27 9
Yields would not increase by using more 8 6 4 2 10 3
Returns would not increase by using more 4 3 12 6 7 2
Using more would damage the crop 7 5 8 4 13 4
Believe usual amount is the right amount 76 58 92 46 152 48
Fertilizer is not available 9 7 1 1 10 3
Other 11 8 5 2 12 4

Notes: This table reports the reasons that farmers stated in the endline survey why they used more or less than the
indicated fertilizers in the 2015 rabi wheat season. Farmers were asked how much fertilizer they used in comparison
with the recommendations (more than, less than, or recommended amount). Farmers who reported having applied
more or less of the recommended amount were then asked why they did so. Both the frequency and the share are
reported for each indicated fertilizer. DAP = diammonium phosphate.
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Table 8: Correlations of observed fertilizer application with SHC recommendations and planned
fertilizer application (priors)

(1) (2) (3) (4) (5) (6)
Urea Urea DAP DAP MOP MOP

SHC Rec 0.42** 0.40** -0.052 -0.050 0.21*** 0.21***
(0.18) (0.17) (0.10) (0.10) (0.064) (0.063)

Prior 0.28*** 0.28*** 0.095 0.095 0.22*** 0.22***
(0.079) (0.077) (0.078) (0.078) (0.070) (0.070)

Controls No Yes No Yes No Yes
Observations 388 388 388 388 388 388
Mean dep. var 221.8 221.8 113.5 113.5 17.0 17.0
� 1 + � 2 = 1 0.1 0.1 0.0 0.0 0.0 0.0

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Notes: Dependent variables are endline fertilizer application rates (kg/ha). \SHC Rec" is the recommended ap-
plication rate shown on the SHC. \Prior" is the self-reported planned fertilizer application rate in the 2014-15 rabi
season, which was elicited prior to receiving the SHC. Controls include age, literacy, 2013 kharif yields, trust, CRRA,
plot size, and enumerator �xed e�ects. Standard errors (adjusted for clustering at the village level) in parentheses.
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Table 9: Urea responsiveness: weight placed on signal by con�dence level

(1) (2) (3) (4)
(Post-Prior) (Post-Prior) (Post-Prior) (Post-Prior)

(SHC - Prior) 0.64*** 0.42*** 0.74*** 0.86***
(0.067) (0.12) (0.070) (0.11)

(SHC - Prior) � SD Urea 0.69**
(0.31)

Much higher yields=1 � (SHC - Prior) -0.17*
(0.087)

Much less doubts=1 � (SHC - Prior) -0.21*
(0.12)

Controls Yes Yes Yes Yes
Observations 388 388 388 388
R2 0.358 0.381 0.379 0.379

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Notes: Dependent variable is the update in farmers' subjective belief regarding optimal urea application rate, mea-
sured as actual endline urea application rates (Post) minus planned application rates (Prior). The primary explana-
tory variable is the di�erence between the received signal (SHC) and farmers' planned application rates (Prior), with
and without interactions with three measures of con�dence: the standard deviation of the distribution of subjective
beliefs about optimal urea application (\SD Urea"), a binary indicator equal to 1 if farmers reported have much fewer
doubts than their peers about input usage (\Much less doubts"), and a binary indicator that is equal to 1 if farmers
reported that they would have much higher yields relative to their peers if they cultivated on the same plot with
equal access to inputs (\Much higher yields"). \SHC" is the recommended application rate of urea shown on the
SHC (kg/ha). \Prior" is the planned fertilizer application rate for the 2014-15 rabi season, which was elicited prior
to receiving the SHC (kg/ha). The regressions control for the mean of farmers' belief distribution, age, literacy, 2013
kharif rice yields, trust, plot size, and enumerator �xed e�ects. Standard errors (adjusted for clustering at the village
level) in parentheses.
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Table 10: DAP responsiveness: weight placed on signal by con�dence level

(1) (2) (3) (4)
(Post-Prior) (Post-Prior) (Post-Prior) (Post-Prior)

(SHC - Prior) 0.49*** 0.40*** 0.58*** 0.64***
(0.071) (0.14) (0.089) (0.097)

(SHC - Prior) � SD DAP 0.37
(0.40)

Much higher yields=1 � (SHC - Prior) -0.17
(0.13)

Much less doubts=1 � (SHC - Prior) -0.14
(0.12)

Controls Yes Yes Yes Yes
Observations 388 388 388 388
R2 0.221 0.246 0.246 0.245

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Notes: Dependent variable is the update in farmers' subjective belief regarding optimal DAP application rate, mea-
sured as actual endline DAP application rates (Post) minus planned application rates (Prior). The primary explana-
tory variable is the di�erence between the received signal (SHC) and farmers' planned application rates (Prior), with
and without interactions with three measures of con�dence: the standard deviation of the distribution of subjective
beliefs about optimal DAP application (\SD DAP"), a binary indicator equal to 1 if farmers reported have much fewer
doubts than their peers about input usage (\Much less doubts"), and a binary indicator that is equal to 1 if farmers
reported that they would have much higher yields relative to their peers if they cultivated on the same plot with
equal access to inputs (\Much higher yields"). \SHC" is the recommended application rate of DAP shown on the
SHC (kg/ha). \Prior" is the planned fertilizer application rate for the 2014-15 rabi season, which was elicited prior
to receiving the SHC (kg/ha). The regressions control for the mean of farmers' belief distribution, age, literacy, 2013
kharif rice yields, trust, plot size, and enumerator �xed e�ects. Standard errors (adjusted for clustering at the village
level) in parentheses.
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Table 11: E�ects of con�dence on willingness to pay for SHCs

(1) (2) (3) (4) (5) (6)
WTP WTP WTP WTP WTP WTP

SD Urea 1.00** 0.84** 1.79*** 1.68***
(0.39) (0.40) (0.43) (0.44)

SD DAP 2.31*** 2.46*** 2.87*** 2.92***
(0.52) (0.52) (0.51) (0.51)

Trust 0.053 0.053 0.049 0.046 0.092 0.086
(0.13) (0.13) (0.14) (0.14) (0.13) (0.13)

Literacy 0.43*** 0.33*** 0.39*** 0.31** 0.43*** 0.32**
(0.12) (0.12) (0.11) (0.12) (0.12) (0.12)

Constant 1.35*** 1.41*** 1.87*** 1.92*** 1.60*** 1.67***
(0.45) (0.43) (0.40) (0.40) (0.37) (0.39)

Controls No Yes No Yes No Yes
Observations 864 864 864 864 864 864
Adjusted R2 0.328 0.343 0.302 0.313 0.322 0.339
Mean dep. var 1.65 1.65 1.65 1.65 1.65 1.65

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Note: Dependent variable is stated willingness to pay for soil testing and recommendations ($US). The sample in-
cludes all farmers that were present in the baseline survey. The \SD Urea" and \SD DAP" terms re
ect the standard
deviations of the distributions of subjective beliefs over optimal fertilizer application rates, and are measures of
farmers' con�dence. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions
contain village �xed e�ects and controls for age and gender and the mean of farmers' beliefs distributions. Addi-
tional control variables in columns 2, 4, and 6 include ability, household size, house value, whether the household
owned the tested plot, whether the household owned an irrigation pump, and whether the household had access to
credit during rabi 2013.
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Table 12: E�ects of con�dence on willingness to pay for SHCs

(1) (2) (3) (4)
WTP WTP WTP WTP

Much higher yields -0.68*** -0.67***
(0.11) (0.10)

Much less doubts -0.87*** -0.81***
(0.20) (0.20)

Constant 2.74*** 2.81*** 3.08*** 3.09***
(0.12) (0.23) (0.16) (0.25)

Controls No Yes No Yes
Observations 864 864 864 864
Adjusted R2 0.295 0.310 0.297 0.310
Mean dep. var 1.65 1.65 1.65 1.65

* Signi�cant at 10 percent level; ** Signi�cant at 5 percent level; *** Signi�cant at 1 percent level.
Note: Dependent variable is stated willingness to pay for soil testing and recommendations ($US). The measures of
con�dence include a binary indicator equal to 1 if farmers reported they would have much fewer doubts than their
peers about input usage (\Much less yields") and 0 otherwise, and a second binary indicator equal to 1 if farmers
reported that they would have much higher yields relative to their peers if they cultivated on the same plot with
equal access to inputs (\Much higher yields"). The sample includes all farmers that were present at the time of the the
baseline survey. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions contain
village �xed e�ects, literacy, a measure of trust, and controls for age and gender. Additional control variables in
columns 2 and 4 include household size, house value, whether the household owned the tested plot, whether the
household owned an irrigation pump, and whether the household had access to credit during rabi 2013.
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Figure 1: Timeline of Data Collection
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Figure 2: Proportion of Total Beans Allocated to Fertilizer Ranges (kg/katha)

(a) Urea (b) DAP

Notes: This �gure presents the total proportion of beans allocated to each of the fertilizer application ranges shown
to farmers during the belief elicitation exercise in kg/katha.

Figure 3: Fertilizer application relative to mean of beliefs about optimal fertilizer application

(a) Urea (b) DAP

Notes: The X-axis shows the mean of the elicited beliefs distribution of optimal fertilizer application rates for each
farmer. Fertilizer application rates in kharif 2014 (kg/katha) are plotted using a locally polynomial smoothing re-
gression with an Epanechnikov kernel (bandwidth = 0.12). The 95% con�dence intervals account for clustering by
village.
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Figure 4: Example SHC (Hindi)

54


	 Introduction
	Model of information demand and responsiveness
	Demand and Responsiveness to Information

	Context and Experimental Design
	Sampling, Randomization, and Treatment
	Prior belief elicitation
	Soil Tests and Recommendations

	Summary Statistics and Balance

	Impacts of the SHC on Fertilizer Application
	Urea, DAP, MOP
	Discussion
	Farmers' Comprehension of the SHC Content
	Self-Reported Reasons for Not Following the SHCs

	Willingness-to-pay for Zinc

	Responsiveness to the SHCs Among Treated Farmers
	Demand for the SHC

	Conclusion
	Robustness to Attrition
	Zinc
	Heterogeneous responses to SHC

