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Abstract

The imbalanced use of chemical fertilizers in India is widely blamed for low yields,
poor soil health, and pollution of water resources. Simultaneously, fertilizer subsidies –
especially urea – are a source of large public expenditures. To address the issue, the gov-
ernment of India invested in a large-scale program of targeted soil testing and customized
fertilizer recommendations, with the hope that scientific information will lead farmers to
optimize their fertilizer mix. We conducted a randomized controlled trial in the Indian
state of Bihar in what we believe to be the first evaluation of the e�ectiveness of the pro-
gram as currently implemented. We find evidence that soil testing and targeted fertilizer
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recommendations increased urea usage but did not lead to more balanced fertilizer appli-
cation. To rationalize these findings, wemodel and test the impacts of confidence and trust
on farmers’ willingness to pay for and responsiveness to input recommendations and soil
quality measures. We find that farmers with less disperse priors (more confident) have
a lower willingness to pay for soil testing ex-ante and lower responsiveness of fertilizer
usage to the recommended application rates while trust further impedes the e�ectiveness
of the recommendations.
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1 Introduction

The imbalanced use of chemical fertilisers is a major environmental and public health is-
sue in many emerging economies (Vitousek et al., 2009), including in many parts of India.
Farmers tend to under apply certain types of fertilizers and typically over apply nitrogen
fertilizers, which pollutes water resources, harms soils and entails substantial public ex-
penditure on subsidies with no benefits for crop yields.1 To address this imbalance, the
Government of India launched a Soil Health Card (SHC) program in 2015 that aimed to
provide all 140 million farmers in the country with lab-derived soil health information
and targeted fertilizer application recommendations on a triennial basis. The goal of the
85 million dollar program is to improve the precision of farmers’ fertilizer usage in order
to increase yields and profits and reduce pollution. The implicit assumption underlying
the program is that farmers misapply fertilizers because they lack scientific information
and recommendations that are targeted to their soil attributes.

The SHC program is likely one of the largest informational interventions in the devel-
oping world. Information provision experiments are used increasingly in public policy,
health, education, and labor economics, but evidence on their impacts remains mixed.2 In
developing countries in particular, the delivery of targeted agricultural information has
proved di�cult. While traditional extension systems are often thought to be ine�ective
and costly (Anderson and Feder, 2007), several recent evaluations found novel, ICT based
extension approaches to derive substantial impacts on input usage and agricultural prac-
tices (Casaburi et al., 2014; Cole and Fernando, 2016). One potential explanation for the
lack of response to information interventions is that individuals do not deem the infor-
mation useful, even if it is new to them. When farmers are confident in their beliefs, an
unanswered question is whether targeted information is su�cient to change input use
behavior.

In this paper, we provide experimental evidence on this question and examinewhether
the introduction of targeted soil health cards that provide soil quality information and in-
put recommendations influences fertilizer usage. We conducted a randomized controlled
trial with 864 households in the Indian state of Bihar that was introduced before the gov-

1Public expeditures on fertilizer subsidies represent 1% of GDP, by some estimates.
2There is a large literature that studies the impacts of information provision on health behavior and out-

comes (Bennett et al., 2018; Dupas, 2011; Guiteras et al., 2016), job search (Belot et al., 2019; Fafchamps et al.,
2020), education investments (Dizon-Ross, 2019; Jensen, 2010), and increasingly in public policy (Banuri
et al., 2019; Hjort et al., 2019; Vivalt and Coville, 2020) under the assumption that lack of information about
costs and benefits is a binding constraint on optimal investments and behaviors. See Dupas and Miguel
(2017) for a review of this literature in public health and a discussion of the impacts of general and tailored
information in health programs.
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ernment’s SHC program and shared many of its characteristics. Enumerators collected
soil samples from treated farmers’ fields that were tested in a certified laboratory. Trained
field sta� provided farmers with the SHCs as well as derived recommendations for the
required dosage of various fertilizers for the dominant cropping patterns in the area. Al-
though the recommendations of the SHCsweremarkedly di�erent from farmers’ baseline
fertilizer applications, there is little evidence that they encouraged more balanced fertil-
izer application decisions. We find that, on average, the recommendations increased urea
application rates during the rabiwheat crop by between 5 and 6 percent and increased the
likelihood of applying potash by 8 percentage points, but had no e�ect on DAP usage.3

Analysis of heterogeneity in willingness to pay for soil testing and responsiveness to the
recommendations amongst treated farmers reveals that the measured e�ects are driven
primarily by farmers with less confidence in their beliefs about optimal fertilizer usage.
Further, trust in existing extension services is low amongst farmers and while we find no
e�ect of trust on demand for information, lack of trust further moderates the impact of the
recommendations on responsiveness to the soil tests.

Various factorsmay limit the impacts of informational interventions on agents’ choices,
and in recent years, a growing literature has explored them in the context of smallholder
farmers’ cultivation practices and technology adoption. One possibility is that informa-
tional gaps are not in fact the binding constraints, but instead other market ine�ciencies
limit farmers’ investments or technology adoption (Jack, 2013). A second class of expla-
nations blame the quality of the information, agent trust in the source of the information,
and the manner in which it is disseminated.4

A third potential class of explanation, which is less studied in the literature, is focused
on the “receivers” of the information and the role of biased beliefs.5 In this paper, in partic-
ular, we examine the possibility that pre-existing beliefs can be too strong to be a�ected by
newly supplied information. It is very common for extension professionals to anecdotally
blame such beliefs for the persistence of (what they consider to be) misguided practices

3The recommendations were based on existing soil characteristics and encouraged increased fertilizer
usage for some farmers and decreased fertilizer usage for others. See section 3.4 for summary statistics of
fertilizer recommendations and baseline fertilizer application rates.

4For example, in a highly heterogenous environment typical of smallholder farming (Suri, 2011), generic
or insu�ciently targeted recommendations may be of little use; Extension agents, who are typically charged
with delivering information to farmers, are often overtaxed, poorly trained and incentivised (Anderson and
Feder, 2007); And sources of information (e.g. lead farmers) may not be incentivised (BenYishay and Mo-
barak, 2018) to di�use it or be sub-optimally placed within social networks to reach most farmers (Beaman
et al., 2018).

5In agriculture, Hanna et al. (2014) point to the di�culty of noticing crucial dimensions of productivity
as an impediment to learning from experience or from others. Barham et al. (2018) show that receptiveness
to advice sped up GM corn seed adoption amongst farmers in the U.S with low cognitive ability, but slowed
adoption amongst farmers with high cognitive ability.
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by farmers. We sketch a simple learningmodel in whichwe extend the target-inputmodel
(Bardhan and Udry, 1999) and allow for farmers to purchase and use a signal conditional
on their beliefs, farming ability, and perceptions of the trustworthiness of the signal. In
this Bayesian framework, the precision of farmers’ beliefs may attenuate the demand for
information aswell as the impact of the information on input usage. We elicit the precision
of farmers’ beliefs about optimal input use (i.e., their confidence) using simple visual aids
similar to those frequently used in the field to elicit subjective beliefs (Delavande et al.,
2011).6 Using the elicited beliefs and a self-reported measure of confidence, we provide
some of the first field evidence that it can indeed reduce both demand for and respon-
siveness to an informational intervention. The context of the study is highly suitable for
such an investigation. Unlike most existing studies, which are concerned with informa-
tion about the benefits of adopting a new practice or input, the goal of the intervention we
study is to adjust the use of a familiar and highly subsidized input. The recommendations
therefore mostly incur little costs, and are also highly targeted, ruling out other potential
explanations for lack of responsiveness.

This paper contributes to and bridges the literatures on information provision in agri-
culture on the one hand, and the role of evidence and beliefs on the other.7 Farmers in
developing countries often lack access to timely and reliable information about modern
technologies and inputs that are essential to improve agricultural productivity. Traditional
methods of disseminating information through extension agents have not produced com-
pelling evidence either on its impact on productivity or on cost e�ectiveness. A devel-
oping literature has shown promising results using digital technologies as a means of in-
formation di�usion to encourage technology adoption and deliver targeted information
about inputs and practices to farmers.8 Cole and Fernando (2016) use a Becker-Degroot-
Marschak (BDM)mechanism to elicit farmer willingness-to-pay for a voice-based ICT ad-
visory service in Gujarat, India. Interestingly, they find that the farmers had high demand
for and self-reported utilization of the service, but that the intervention did not have a
statistically significant impact on yields or profits.9 Two recent papers study the provi-

6See Moore and Healy (2008) for further discussion of how confidence has been measured in both the
psychology and economics literature. Our measure is closest to the concept of “overprecision,” or the exces-
sive certainty regarding the accuracy of one’s beliefs.

7Our methodology is related to a growing literature measuring the impacts of information-provision on
beliefs and decision-makingmore generally, including on energy consumption (Allcott, 2011), collegemajor
choice (Wiswall and Zafar, 2015), and attitudes towards immigration and discrimination (Grigorie� et al.,
2020; Haaland and Roth, 2019).

8See Fabregas et al. (2019) for an overview of the potential of using mobile-phone based services for
digital agricultural extension, as well as Palloni et al. (2018) for additional evidence on farmers’ WTP for
information. Existing studies suggest that there are large gaps between farmers’ willingness to pay for in-
formation and its social value.

9Further, they find that the service increased an aggregate index of inputs recommended by the service
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sion of soil tests specifically. Harou et al. (2019) find that plot specific information and
vouchers for fertilizer purchase in Tanzania were insu�cient to encourage adoption of
chemical fertilizers individually, but that their combination did. Their findings suggest
that a combination of information and liquidity constraints limited farmers’ response to
the soil tests on the application of under-used fertilizers. Cole and Sharma (2017) show
that farmer understanding is a potential barrier to the e�cacy of soil testing. Providing
Indian farmers with audio and video supplements that explain soil health cards increased
farmer understanding and trust considerably more than in-person delivery alone. While
previous studies have highlighted the potential of ICTs to provide more targeted infor-
mation to farmers, there has been no work to our knowledge that examines how farmers’
beliefs, particularly the strength of their beliefs, a�ect demand and responsiveness to in-
formation. Using a randomized information intervention, our results help to explain the
attenuated impact of providing farmerswith information that have not yet been addressed
in previous studies and suggest that identifying and targeting advice to farmers with low
confidence and high marginal value of information may produce the highest returns to
information di�usion e�orts, especially if there are cost constraints.

Our paper is also related to the literature on the impacts of biased beliefs and confi-
dence on information demand and responsiveness. The implications of overconfidence
have been studied in a variety of settings including CEO performance (Malmendier and
Tate, 2005), self-control problems (DellaVigna and Malmendier, 2006), and trader behav-
ior (Eyster et al., 2019). In the domain of information demand, the literature tends to
find that people overweight their private information relative to information from experts
or information conveyed by others’ choices (Benjamin, 2019).10 Increasingly, research on
beliefs has included qualitative measures of confidence to test its impact on Bayesian up-
dating (Armona et al., 2017; Roth and Wohlfart, 2019). Most closely related to our paper
is Ho�man (2016), who conducts framed field experiments with experts that buy and
sell website domain names. The author finds that experts systematically underpay for
valuable information and that this e�ect is stronger among overconfident individuals (us-

by 0.125 sd. Though large, their findings on inputs and agricultural knowledge overall are not significant
when accounting for multiple hypothesis testing.

10The existing literature using lab experiments suggests that there are a number of possible motivations
for information demand that are not necessarily linked to its instrumental value, but rather the players’
beliefs about their own or others’ judgment. Schotter (2003) show that subjects in the lab follow advice of
others that only have slightly more experience than themselves. Surprisingly, subjects preferred to receive
the advice from others rather than get the information directly and make their own choice, presumably
due to under-confidence. Eliaz and Schotter (2010) find that agents are willing to pay for information that
supports their prior beliefs, or increases the confidence in their decisions, but which has no instrumental
value. Ambuehl and Li (2018) show that individuals exhibit di�erences in responsiveness to information,
due to biases in belief updating when receiving new signals.
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ing a measure of overplacement). He also documents significant overconfidence amongst
his participants, in line with previous research using incentivized experiments that mea-
sure ability and confidence. Traditional beliefs, common in many developing countries,
may also a�ect the strength of agents’ priors and their response to information. Bennett
et al. (2018) evaluate a program that improves upon existing hygiene education by show-
ing participants in Pakistan evidence of microbes using microscopes. They show that the
impact of the intervention is attenuated for individuals with strong beliefs in traditional
medicine and argue that this e�ect is due to the precision of participants priors that hy-
giene is ine�ective. However, no papers to our knowledge have examined how measured
confidence a�ects responsiveness to advice in real-world settings. There is little evidence
in particular of the role of confidence on decision making in developing countries, includ-
ing on entrepreneur behavior, job search, or agricultural investment. We fill this gap and
identify substantial hetereogeneity in the strength of farmers’ beliefs and its impacts on
farmers’ investment choices and response to targeted advice. While previous studies on in-
formation demand used proxies for confidence, our work advances the literature by using
quantitative measures of confidence (prior belief precision about agricultural practices).

Finally, wemake a further contribution by operationalizing the dispersion of a farmer’s
subjective probability estimates, a fundamental parameter in learning models, within an
existing technology adoption framework. Themodel used in this paper is an adaptation of
the Bayesian learning-by-doing model popularized by Jovanovic and Nyarko (1996), and
adapted to the agricultural context by Foster and Rosenzweig (1995). The model relies on
the agent updating themean and variance of her beliefs over the true value of a parameter,
in this case optimal fertilizer input levels. The majority of previous research ignores het-
erogeneity along this dimension and assumes commonpriors across farmers. Ourmethod
allows us to elicit these parameters directly from farmers’ subjective beliefs distribution
using visual aids. Thismethod of belief elicitation, summarized inDelavande et al. (2011),
requires respondents to allocate beans or stones across bins to represent probabilities of
events occurring. Similarmeasures have beenused to elicit expectations about future earn-
ings and resulting education choices inMexico (Attanasio and Kaufmann, 2009), expecta-
tions of rainfall among Kenyan pastoralists (Lybbert et al., 2007), and expectations about
contracting and death from HIV/AIDS in Malawi (Delavande and Kohler, 2009).

The remainder of this paper is organized as follows. In Section 2, we provide a model
of learning about optimal input usage to explore the role of confidence on information de-
mand and responsiveness and motivate our empirical analysis. In Section 3, we describe
the soil testing intervention and data collection and provide summary statistics. In Section
4, we show the impacts of the intervention on fertilizer usage and we test the impacts of
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confidence on responsiveness to the recommendations. In Section 5, we discuss alterna-
tive explanations for the lack of response to the soil testing intervention. Finally, in Section
6, we conclude with a discussion of the implications of our findings for the design of sim-
ilar information interventions and how to improve the existing soil health card scheme in
India.

2 Model

In this section, wepresent amodel of informationdemand and responsiveness that demon-
strates how the strength of farmers’ priors over optimal input use explains a lack of ad-
herence to the soil testing recommendations.11

The farmer has knowledge of the production function and the relationship between
inputs and profits but does not know a random target parameter – in this case, the opti-
mal level of fertilizer. In the context of soil testing in Bihar, farmers have learned about
this parameter over multiple periods of individual and social experimentation, and thus,
it seems reasonable to assume that they have defined prior beliefs over the parameter.
However, variation in shocks, soil quality, farming ability, and confidence prevents all of
the uncertainty from being resolved when farmers make planting decisions in the current
period.

The farmer’s output at time t is defined as qt, and is declining in the squared distance
between actual input use kt and the optimal input level ✓t:

qt = 1� (kt � ✓t)
2 (1)

The target input level, ✓t, is the period-specific level of the input that would maximize
total production. The farmer does not know the target level at the time inputs are chosen.
Rather, the farmer chooses input level kt to maximize expected output. The optimal input
level at time t is

✓t = ✓ + ut (2)

where ut ⇠ N (0, �2
u) is an independent and identically distributed shock with known

11Themodel is an adaptation of the target-input model (Bardhan and Udry, 1999; Foster and Rosenzweig,
1995; Jovanovic and Nyarko, 1996). The model allows the agent to have a period-specific optimal input
choice by weighing her various sources of information, including own experimentation and information
from her peers (Foster and Rosenzweig, 2010). In the present application, we allow for decisions to be
informed by an external information source (a signal), which is potentially used by the agent (in this case,
a farmer) to update beliefs about optimal management strategies prior to taking an action. We will then
demonstrate the conditions under which this information would have any value for the agent.

7



variance. The ✓ term represents the objective mean optimal input level about which the
farmer is learning over time. The farmer does not know ✓ at time t but has subjective
(prior) beliefs about the distribution based on a history of input decisions and realized
yields: ✓ ⇠ N (✓⇤t , �

2
✓t). At time t, the farmer’s confidence (⇢✓t = 1

�2
✓t

) is their perception of
the reliability of her estimate. For narrow prior distributions (i.e., with a small variance)
the farmer is confident in her beliefs about the optimal input level, while for wide prior
distributions (i.e., with a large variance), the farmer is less confident.

The period-specific target input level (✓t) varies with independent and identically dis-
tributed shocks, ut.12 The optimal annual input use will be a function of growing con-
ditions (including, among other things, the nutrient levels present in the soil) and the
ability of the farmers to adjust other inputs to suit growing conditions. To reflect this,
we assume that the variance of the optimal input level (�2

u) varies across farmers and de-
pends on farmers’ ability. Farmer-specific ability is denoted as ⇢u = 1

�2
u
, where better

(higher ability) farmers have a lower variance of shocks to optimal input usage. Ability
reflects management capacity, including e�ective coordination of inputs such as fertiliz-
ers, pesticides, labor, irrigation, etc. That is, conditional on aggregate shocks like weather
variability and disease pressure, better farmers have a lower variance of transitory shocks
to optimal input use.13

To simplify the exposition, we normalize output prices to one and assume that the
input is costless. Farmers apply the expected optimal target as the input level, so that
kt = Et(✓t) = ✓⇤t . Expected output (profit) can be expressed as

Et(qt) = 1� Et[kt � ✓t]
2 = 1� Et[✓

⇤
t � ✓ � ut]

2 = 1� �2
✓t � �2

u (3)

From this result it is clear that subjective expected output is decreasing in �2
✓t and �2

u, and
therefore increasing in the level of confidence over the target input level (⇢✓t) as well as
in the farmer’s ability (⇢u). The farmer makes input choices to maximize expected profit,
conditional on the precision of her subjective beliefs about the target parameter. After
applying input level ✓⇤t and observing the realized out qt, the farmer uses equation (1) to
deduce the period specific optimal input, ✓t, and updates her beliefs about ✓ using Bayes’

12The period-specific shock can be decomposed into village-level (covariate) and individual-level (id-
iosyncratic) components with respective variances �v and �i. We assume the shocks are additive and inde-
pendent and exclude the common component to simplify the analysis.

13BenYishay and Mobarak (2018) also interpret 1/�2
u as a measure of innate farming ability in a model

where farmers are considering the purchase of a signal about new technology. Unlike in the present study,
their model assumes farmers do not have previous experience with the technology, and consequently the
distribution of priors is not considered in the decision to purchase the signal.
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rule:
✓⇤t+1 = ✓t

✓
⇢u

⇢u + ⇢✓t

◆
+ ✓⇤t

✓
⇢✓t

⇢u + ⇢✓t

◆
(4)

The farmer’s updated expectation of the optimal input is a linear combination of her pre-
vious expected optimal value (✓⇤t ) and the revealed optimum after harvest (✓t). Specifi-
cally, the weight on the prior expectation is proportional to the farmer’s confidence in her
prior beliefs, while the weight on the revealed target is proportional to the farmer’s abil-
ity. Farmers with better ability (larger ⇢u) place more weight on the revealed optimum
(✓t), and their beliefs move closer to the true value of ✓, holding confidence fixed. Con-
versely, other things equal, farmers with higher confidence in their own subjective beliefs
will place more weight on prior beliefs, and thus their posterior beliefs will more closely
resemble their prior beliefs. In the extreme, if a farmer were to have absolute confidence in
her prior subjective beliefs, then the posterior beliefs will perfectly replicate prior beliefs,
such that the farmer learns nothing from additional information.

Similarly, posterior beliefs about the variance of the target parameter are updated ac-
cording to

�2
✓t+1

=
1

⇢✓t + ⇢u
(5)

A farmer’s confidence at time t + 1 is determined by her prior level of confidence and
her ability. Notice however, that through combining information from the prior subjective
beliefs and the revealed information, the farmer’s posterior beliefs are more precise than
if she were to only rely on one source of information.

2.1 Demand for Information

In this section we extend the model to analyze the farmer’s decision to purchase a signal.
Consider a farmer in time t = 1with beliefsN (✓⇤1, �

2
✓1) and ability ⇢u. The farmer’s beliefs

at time t = 1 are updated using the output from the initial planting season (t = 0), when
her planting decision is made using only initial confidence (⇢✓0) and ability (⇢u). Initial
confidence and ability are assumed to be randomly chosen from some arbitrary distribu-
tion and are independent, conditional on demographics, wealth, and cognitive ability.

In period 1, prior to planting, the farmer is given a choice to purchase a signal, S. With-
out seeing the information, the farmer has prior beliefs about the distribution of the signal,
�2
S . We interpret this variance as the perceived degree of signal reliability, or similarly the

degree of trust that the farmer has in the source of information. If she purchases the signal,
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S is revealed and the farmer updates her beliefs to N (✓̃1, �̃2
✓1) according to

✓̃1 = ✓⇤1

✓
⇢✓1

⇢S + ⇢✓1

◆
+ S

✓
⇢S

⇢S + ⇢✓1

◆
(6)

and uses ✓̃1. If she does not purchase the signal, she plants using ✓⇤1 to maximize expected
profit.

When considering the decision to purchase the signal, the farmer applies Bayes’s rule to
update her beliefs about the variance of ✓ conditional on her belief of the signal’s precision
or reliability. Given these beliefs, the variance after purchasing the signal is calculated
according to

�̃2
✓1 =

1

⇢✓1 + ⇢S
(7)

where ⇢S = 1
�2
S
is the subjective precision of the signal. As before, the updated beliefs are

a weighted function of the farmer’s prior beliefs and the received signal, with the weight
on prior beliefs proportional to the degree of confidence in these beliefs and the weight
on the received signal proportional to the perceived precision of the signal. Note again, if
confidence in the prior beliefs is high, then these updated beliefs will closely resemble the
prior beliefs, other things equal.

We assume that beliefs about the precision of the signal do not change after the signal
is revealed and that farmers are myopic in their choice to purchase the signal (i.e. only the
expected yields of the following season are included in the expected benefits). Substitut-
ing equation (7) into the expected profit equation (3), the farmer will purchase informa-
tion if and only if E(⇡|S = 1) � E(⇡|S = 0) > 0. Farmers’ willingness to pay (WTP) for
the signal is the di�erence between expected profit with and without the signal:

WTP ⌘ E(q̃1)� E(q1) = (1� �̃2
✓1 � �2

u)� (1� �2
✓1 � �2

u) = �2
✓1 � �̃2

✓1 (8)

Substituting equation (7) for the second term of this di�erence gives

WTP ⌘ �2
✓1 �

1
1

�2
✓1

+ 1
�2
S

(9)

So long as the distribution of the signal has a finite variance, this di�erence is always
greater than zero, so farmers should be willing to pay some positive price for information,
regardless of its perceived precision.

This framework allows us to make the following predictions about how farmers’ val-
uation of soil tests vary based on their beliefs and ability and how their input usage is
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expected to respond to new information about soil characteristics and recommendations.

Proposition 1: Demand for information is decreasing in farmer confidence

Conditional on ability, ⇢u, WTP is a decreasing function of initial farmer confidence, ⇢✓0 and
is therefore decreasing in confidence at time t = 1.

Combining the result from equation 8 with equation 5 yields

�2
✓1 � �̃2

✓1 =
1

⇢✓0 + ⇢u
� 1

⇢✓0 + ⇢u + ⇢S
⌘ WTP (10)

Taking the first derivative with respect to ⇢✓0 gives

@WTP

@⇢✓0
=

1

(⇢✓0 + ⇢u + ⇢s)2
� 1

(⇢✓0 + ⇢u)2
< 0 (11)

For any two farmers with the same ability, the farmer with higher confidence at t = 1

will demand less information. We note that @WTP/@⇢u = @WTP/@⇢✓0 . This results from
only having two periods, so both ability and initial confidence are equally weighted in the
calculation of ⇢✓1 . In reality, the weight on ⇢u in the calculation of ⇢✓t will be scaled by the
number of periods that the farmer has planted, and this equality will only hold in the first
period.

Proposition 2: Demand for information is increasing in farmer trust

Conditional on an initial level of confidence, ⇢✓0 , WTP is an increasing function of farmer trust,
⇢s.

Taking the first derivative of (10) with respect to ⇢s gives:

@WTP

@⇢s
=

1

(⇢✓0 + ⇢u + ⇢s)2
> 0 (12)

Conditional on the initial level of confidence and ability, demand for information is in-
creasing in the subjective precision of the signal (⇢s).
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2.2 Responsiveness to Information

We now consider a farmer that is given a signal for free. Upon receiving the signal S,
and assuming that a farmer’s beliefs about the precision of the signal remain constant, �2

S ,
optimal input usage is updated according to Bayes’ rule as given in equation 6:

✓̃1 = ✓⇤1

✓
⇢✓1

⇢S + ⇢✓1

◆
+ S

✓
⇢S

⇢S + ⇢✓1

◆
(13)

Proposition 3: Information responsiveness is decreasing in farmer confidence For any
signal S, the di�erence between actual input use after receiving information and planned input use
prior to receiving information is decreasing in farmer confidence.

We define the degree of information responsiveness after receiving the signal (↵) as

↵ = S � ✓̃1 (14)

where responsiveness captures the degree to which the posterior of the optimal input
value moves towards the signal. The closer that the posterior is to the signal, the more
responsive the farmer is to information, conditional on their prior and the signal.

From equation 6, we can rewrite responsiveness (↵) as:

↵ = S � S

✓
⇢S

⇢S + ⇢✓1

◆
� ✓⇤1

✓
⇢✓1

⇢S + ⇢✓1

◆
. (15)

Taking the derivative of this expression with respect to confidence at time t = 1 yields:

@↵

@⇢✓1
=

⇢S(✓⇤1 � S)

(⇢S + ⇢✓1)2
(16)

If the planned input amount is larger than the recommendation, ✓⇤1 > S, then

@↵

@⇢✓1
< 0 (17)

In other words, the degree of advice utilization is decreasing in farmer confidence. The
same result holds when farmers are applying less than the recommended amount, or ✓⇤1 <
S.14

14Here we consider two cases: when ✓⇤1 > ✓̃1 > S and ✓⇤1 < ✓̃1 < S. There are also cases in which the
posterior “overshoots” the signal (e.g ✓⇤1 < ✓̃1 < S). In this case, it is trivial to show that the di�erence
between the posterior will be declining in the degree of confidence and ability.
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Proposition 4: Information responsiveness is increasing in trust in the source

For any signalS, the di�erence between actual input use after receiving information and planned
input use prior to receiving information is increasing in farmer trust in the source of the informa-
tion.

As above, taking the derivative of the numerator of equation (14) with respect to ability
at time t = 1 yields

@↵

@⇢S
=

⇢✓1(S � ✓⇤1)

(⇢S + ⇢✓1)2
(18)

If the planned input amount is larger than the recommendation such that ✓⇤1 > S:

@↵

@⇢S
> 0 (19)

In other words, the degree of advice utilization is increasing in trust. The same result
holds when farmers are applying less than the recommended amount, or ✓⇤1 < S.

3 Experimental Design and Data

To test the e�ectiveness of the soil health card scheme in Bihar and the theoretical pre-
dictions, we implemented a field experiment in partnership with the Department of Soil
Science of Rajendra Agricultural University (RAU) in Samastipur district, Bihar.15 Despite
India’s history of soil testing, the state of Bihar has lagged behind other states such as Gu-
jarat in its soil testing program. Among treatment farmers, only 2 percent reported ever
having their soil tested, but 95 percent indicated that they would like to have their soil
tested. This suggests a potentially high demand for the service that is not currently being
met.

3.1 Randomization and Timeline

To select households, we used a multistage sampling approach. In the first stage, we se-
lected three districts with a predominant rice-wheat cropping system from which to sam-
ple households: Bhojpur, Madhubani, and Nawada (Figure 1). In the second stage, we
selected 16 high-rice-producing blocks (subdistrict administrative units) across the three

15RAU is the oldest and most prestigious institution for agricultural research and extension in the state
and has the most capable testing capacity to carry out the soil testing and recommendations
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districts, with the number of blocks drawn from each district proportional to the share
of rice production attributable to that district: seven blocks were selected from Bhojpur,
6 from Madhubani, and 3 from Nawada.16 Within each of these 16 blocks, we randomly
selected 2 villages fromwhich to draw households for treatment and 1 village fromwhich
to draw households for a control group. From each of these 48 villages, we randomly
selected 18 rice- and wheat-growing households from village rosters prepared by enu-
merators through door-to-door listing.

Figure 2 illustrates the timeline of the SHC intervention and related data collection
activities undertaken during the study. In April-May 2014we conducted a baseline survey
that covered both treatment and control households and collected information on farmer
characteristics (such as age, gender, education, caste membership, total landownership),
use of inputs (including quantities of applications for di�erent types of fertilizers), and
yields for rice crops harvested during 2012-2013.

During the baseline survey, we elicited risk preferences, self-reported confidence, and
subjective beliefs regarding optimal urea and diammonium phosphate (DAP) use on the
upcoming rice crop for kharif 2014.17 We also collected information about farmers’ past
experience with soil testing and their stated willingness-to-pay for soil test. The belief
elicitation process and willingness-to-pay are explained in greater detail in Section 3.2
below.

In May-June 2014, following the baseline survey, we collected soil samples from one
plot of every treatment farmer. The plot fromwhich sampleswere collectedwas randomly
selected from a list of farmers’ self-identified two most important plots. Eight graduates
from local agricultural universities with farming experience were selected to serve as ex-
tension agents for this study. These agents received a three-day training from experts at
RAU and the regional o�ce of the Indian Council of Agricultural Research on the proper
procedures for collecting soil samples for subsequent testing. These agents then visited
each of the treatment households, collected soil samples according to the recommended
practices, and deposited them with the soil testing laboratory at RAU. This execution of
soil testing and its delivery to the laboratory was meant to approximate the intended exe-
cution of the central government’s SHC program, albeit at an individual household level

16We had originally planned to carry out the intervention during the monsoon rice-growing season
(kharif ). Due to logistical challenges with the pace of soil analysis in the RAU laboratory, we were forced to
delay distribution of SHCs until just prior to the wheat-growing season (rabi). Limited soil testing capacity
remains a major challenge for the successful implementation of the soil testing program all over India, and
delays are common. Fortunately, almost all farmers in our study area also grow wheat on more than 90
percent of their gross cultivated area during the rabi season.

17See Ward and Singh (2015) for further discussion on the risk elicitation experiment and estimation of
risk preferences using a method similar to Tanaka et al. (2010).
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rather than on a gridded basis.
The soil samples were sent to RAU for chemical analysis. Using wet chemistry meth-

ods, the soil scientists at RAU tested for the levels of key macronutrients (nitrogen, phos-
phorus, and potash) available in the soil, as well as organic carbon content, electrical con-
ductivity, soil pH value (i.e., whether the soil is alkaline, acidic, or neutral), and the levels
of some important secondary- and micronutrients (sulfur, zinc, iron, copper, and man-
ganese). Based on these analyses,18 the scientists at RAU generated plot-specific SHCs
reporting soil nutrient composition (i.e., the levels of various nutrients and comparison
relative to some threshold level) and crop-wise fertilizer recommendations for the 2014
kharif and 2014-15 rabi seasons. Recommendations were calibrated for a designated target
yield of 40 quintals per hectare for wheat.19

The SHCs (printed in Hindi) were hand-delivered to individual farmers in November
2014 (prior to planting the rabiwheat crop) by the extension agents trained on the proper
interpretation and explanation of SHC results and recommendations. The front side of
the SHC contained information on soil nutrients and their measured levels, categorized
as low (deficient), medium (within the acceptable range), or high (excessive), while the
back side of the SHC provided farmers with information on the recommended quantities
of di�erent fertilizers to apply to their various crops. An example of the soil health card
(translated into English) is presented in Figure 3. Just prior to receiving the recommen-
dations, treatment farmers were asked about the planned input usage on their two main
plots in the upcoming 2014-2015 rabi season, as well as their expected yields.

Because the baseline survey was focused primarily on rice rather than wheat, a pre-
treatment survey of households was carried out prior to the distribution of the SHCs
(November 2014) to collect information on cultivation habits, fertilizer application, and
wheat yields from the previous rabi season (2013-2014).20 The endline survey was con-
ducted after the rabi 2014-15 wheat harvest (June-July 2015) and collected information on
farmers’ fertilizer application and production during the 2014-2015 rabi season.

3.2 Measurement

3.2.1 Willingness-to-pay for soil tests

During the baseline survey, we collected information about previous experiences with soil
testing and farmers’ stated demand for soil testing which included both soil health infor-

18See section 3.2.4 for a description of the yield response equations
19A quintal is equivalent to 100 kg.
20The pre-treatment survey was administered to collect data on input usage and yields in the previous

rabi season as a supplement to the initial baseline survey.
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mation andplot specific recommendations for fertilizer application rates. In general, while
soil testingwas possible in the study area during the baseline survey, the process of collect-
ing samples and bringing them to the lab was prohibitively costly and time consuming for
individual farmer. In practice, the market for the service was not developed and existing
private and public providers lacked capacity for soil testing to become widespread. Fur-
ther, there was very little knowledge about soil testing in general or how to have their soil
tested. Among treatment farmers, only 2 percent reported ever having their soil tested,
but 95 percent indicated that they would like to have their soil tested. The primary reason
for not having their soil tested was that there was no facility available (63 percent), fol-
lowed by cost and lack of interest. Of the farmers that expressed the desire to have their
soil tested, over half wanted information about howmuch urea and other fertilizers to use
as well as the timing of fertilizer application. Others were concerned only with howmuch
urea to use (17 percent), which other fertilizers to use (26 percent) or when to apply fertil-
izers (5 percent). Farmers that did not want their soil tested reported that there would be
no benefit as the primary reason (37 percent), while others cited a lack of trust in the re-
sults (9 percent), that they already know soil health (9 percent), or had some other reason
(45 percent).

To collect WTP for the soil tests we use a contingent valuation (CV) method. Poli-
cymakers are often interested in how individuals value goods and services that are not
traded in the marketplace and these valuations can be measured using survey questions
elicit respondents’ willingness to pay (Alberini and Kahn, 2006; Cawley, 2008).21 Prior to
collecting theWTP, farmers in both the treatment and control groupswere informed about
the process of soil testing, how fertilizer recommendations were developed, and how they
could interpret the soil tests. After receiving the information, and being told that the re-
search teamwould collect soil samples and deliver soil health cards to them, farmers were
then asked: How much are you willing to pay to have your soil tested and to be provided with soil
health information and fertilizer recommendations?.

Figure 9 shows the distribution of the willingness to pay for soil health cards. On one
extreme, 30 percent of farmers answered that they were not willing to pay any money for
soil tests. Further, a total of 72 percent of the farmers had a willingness to pay of less than
$2 which was the price of soil testing using the available public service at the time of the

21Contingent valuationmethods are commonly applied in both environmental and health economics. For
an overview of the methods and process of WTP elicitation see (Alberini and Kahn, 2006). These methods
are also criticized due to the fact that stated preferences are often inferior to observing revealed preferences
or eliciting WTP using incentivized methods such as a Becker-DeGroot-Marschak (BDM) mechanism. Due
to the relative lack of availability and knowledge about soil testing, we opted for the CV method due to
concerns about the ability to elicit non-zero values of WTP using other incentive compatible techniques.
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intervention. The distribution of willingness to pay shown in Figure 9 indicates that while
some farmers see little value in information about soil quality, a substantial fraction of
them value it a lot.

3.2.2 Trust

To have ameasure of farmer trust in information provided by agricultural extension agents
(⇢S), we asked a binary measure of respondent trust in the information provided by agri-
cultural extension agents. Trust in extension agents is a proxy for beliefs about the e�cacy
of agricultural extension services and the information provided and should therefore pro-
vide information on farmers’ perception of the reliability of signals from extension agents.
Specifically, we asked farmers to choose between two options:

I will not trust new information from KVK (extension) agents until there is
clear evidence that it is e�ective.
I will trust new information from KVK (extension) agents until there is clear
evidence that it is not e�ective.

3.2.3 Confidence measures

To elicit subjective beliefs about optimal fertilizer application rates, we employed a hypo-
thetical, visually-aided elicitation method. Farmers’ beliefs were collected in the initial
baseline survey regarding their beliefs about optimal fertilizer application rates (urea and
DAP) in the upcoming 2014 kharif rice season. To elicit the beliefs, farmers were asked to
allocate beans across bins according to how likely they think that each fertilizer application
rate bin would lead to the highest yields on their primary agricultural plot.22

Whereas much of the early work using similar visually-aided experiments to elicit sub-
jective beliefs avoided explicit references to probability or likelihood (e.g., due to idiosyn-
cratic di�erences in the interpretation these terms), we followed the example of Delavande
and Kohler (2009) and explicitly framed our experiment in probabilistic terms. In order to
minimize the risk of confusion or idiosyncratic di�erences in interpretation, we attempted
to ensure that all respondents began the experiment with a comparable baseline under-
standing of probability. Prior to initiating the experiment, enumerators gave farmers a

22Delavande et al. (2011) argue that answers to hypothetical beliefs elicitation experiments such as this
are reasonable, and therefore do not require incentives. While recent experimental evidence finds some
evidence for hypothetical bias due to risk aversion using non-incentivized beliefs-elicitation methods (Har-
rison, 2016), our elicitation procedure is constrained by the non-verifiability of the true value of the random
variable, and therefore we are unable to elicit beliefs with incentives. Nevertheless, we present results con-
trolling for risk aversion and discuss the implications of hypothetical bias in our results.
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brief introduction to the fundamentals of probability to help them conceptualize the sub-
sequent experiment. Farmers then evaluated a series of five practice questions that tested
their comprehension of subjective probabilities and their ability to allocate 20 beans to
represent these probabilities.

After participants were comfortable representing probabilities with the beans, they
were asked to allocate 20 beans to represent their subjective beliefs regarding the optimal
urea and DAP application rates (in kg per katha) for the upcoming kharif season on their
primary rice-growing plot.23 The bins of fertilizer application rates were predetermined
based on conversationswith farmers and extension agents in the region. TheDAP support
consists of 5 bins spread over the empirical distribution of DAP while the urea support
consists of 7 bins spread over the empirical distribution of urea application rates. We
chose varying bin sizes in order to cover the whole empirical support of fertilizer usage
while allowing for variation where the majority of application occurs and control for the
mean of the subjective beliefs distributions in all regressions.24

Eliciting the beliefs distributions entailed two questions for each bin. Before starting,
respondents were reassured that there were no incorrect answers and that we were only
interested in their thoughts regarding optimal fertilizer use. For each bin, respondents
were asked:

Do you think that this range of total urea (or DAP) applied throughout the
season could result in the maximum possible yield in the upcoming season on
your primary rice-growing plot? If yes, what is the likelihood that this range
of application rates will result in the maximum possible yield in the upcoming
season?

After repeating these questions for each bin, respondents were allowed to reconsider their
choices and re-allocate beans accordingly, using the entire support and all beans.

Figure 4 shows the range of values available for urea and DAP, respectively, and the
proportion of total beans (or total probability) allocated to each bin. The figures show
that at least some farmers consider the whole support to be plausible for both fertilizers
except the highest fertilization rates. The slight skewness may be attributed to local beliefs
over the amount of urea that results in crop failure. There is no apparent bunching at

23A katha is a unit of land commonly used throughout South Asia, with 1 acre approximately equivalent
to 32 katha.

24Delavande et al. (2011) conduct experiments to test the sensitivity of subjective distributions to a variety
of elicitation methods and find that results are generally robust across bin count, predetermined versus self-
anchored support, and the number of beans to be allocated. However, accuracy increases by includingmore
bins and beans without a marked increase in the cognitive burden on respondents.
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particular values of the distribution, and most bins have over 20 percent of respondents
believing that there is at least some possibility that the corresponding range of fertilizer
application will result in the highest yields.

From the sequence of responses, we calculate the first and second moments for each
individuals’ subjective beliefs assuming a stepwise uniform distribution (Attanasio and
Augsburg, 2016). The expectation and variance of the elicited beliefs are used as proxies
for the corresponding expectation and variance of the farmers’ true beliefs distribution
prior to receiving soil testing (✓1, �2

✓1), and treat farmers’ confidence as a measure of the
precision of their prior beliefs (⇢✓1 = 1

�2
✓1

). Figure 5 shows the relationship between actual
fertilizer application rates during the 2014 kharif season relative to the elicited expectations
of the subjective beliefs distributions for urea and DAP. In general, the expectations of the
beliefs about optimal urea and DAP are nearly the same as actual application rates in the
following season. This similarity provides further evidence that the elicitation procedure
captured meaningful information about farmers’ beliefs.

While we elicited subjective beliefs over optimal fertilizer rates for the rice crop for
kharif 2014, logistical constraints delayed the preparation of SHCs until after the sowing
for the kharif 2014 season. Due to the timing of the experiment discussed in the previous
section, we use these subjective beliefs in the analysis of fertilizer usage during the win-
ter rabi (wheat) season of 2014/2015. Empirical overconfidence experiments find within-
agent confidence correlations between 0.50 and 0.60 across tasks (Klayman et al., 1999).
Given the similarity in experimental tasks in the present study, we believe confidence in
beliefs for fertilizer application during the kharif season is a reasonable, though imperfect,
proxy for confidence in beliefs for fertilizer application in the rabi season. Table 1 pro-
vides evidence that dispersion in beliefs for both urea and DAP are positively correlated
(Pearson correlation coe�cient of 0.38), suggesting that confidence is correlated across
di�erent fertilizers for the same crop. The dispersion measures are also correlated with
survey measures of relative confidence described below, suggesting that we are capturing
meaningful heterogeneity in respondents that may also be applicable across crops.

In addition to subjective beliefs, we asked questions that provide self-reported mea-
sures of relative confidence as well as a question that captures farmer’s subjective percep-
tion of their ability. The first question asks:

How often do you have doubts about agricultural practices?

Farmers respond on a Likert scale corresponding to judgments from “much less than oth-
ers” to “much more than others.” From this scale we construct a measure of whether
farmers have the same or more doubts relative to their peers.
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The second question asks:

Given the same soil quality and access to inputs, how would your yields com-
pares to others in your village?

Farmers respond on a Likert scale corresponding to judgments from “much less than oth-
ers” to “much more than others.” From this scale we construct a measure of farmers’
subjective relative ability.

3.2.4 Ability

In the theoretical model developed in section 2, ability reflects farmers’ managerial capa-
bilities and their capacity to limit the impacts of shocks. As a result, ability results in faster
convergence of beliefs to the optimum and, consequently, higher yields conditional on soil
characteristics. Based on this reasoning, we construct a measure of ability using the sim-
ple, linear yield response equation used by the soil scientists at RAU as the basis for the
soil recommendations. Recall that the subjective beliefs distributions were collected for
farmers beliefs about optimal fertilizer application rates for the kharif rice season. Thus,
the measure of ability that we use in the following analysis is based on performance on
their rice crop. The equation below relates the target rice yield and available levels of nitro-
gen in the soil to calculate a recommendation for urea application at the plot-level. These
equations are customized to each district based on some underlying basic soil characteris-
tics. The recommended urea application (in quintals per hectare) is calculated using the
following equation :

SU,i = (Y ⇤ ⇥ 4.06�Ni ⇥ 0.23)/46.08 (20)

where SU,i is the recommended level (or signal) for urea (U) specific to farmer i, Y ⇤ is
the target yield (in quintals per hectare), andNi is the nitrogen available in the soil. From
this equation, we calculate the yield that the farmer should have obtained in kharif 2013
by replacing SU,i with the actual level of urea applied and solving for Y ⇤

i . This “target”,
Y ⇤
i , therefore, would then be the yield that farmer i should have obtained, assuming the

specified yield response parameters. Using this value, we calculate the di�erence between
realized rice yields during kharif 2013 (Y13,i) and Y ⇤

13,i. Farmers are categorized as “high”
ability if their di�erence falls within the bottom quartile of the distribution of Y ⇤

13 � Y13,
and are categorized as “low” ability if their di�erence in the top quartile of the distribution
of Y ⇤

13 � Y13. The middle fifty percent of farmers are classified as “medium” ability. The
resulting categories provide a measure of ability across farmers that allows us to control
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for relative di�erences in innate farming ability and test the comparative statics from the
model on the relationship between ability and responsiveness to the SHCs.

3.3 Summary Statistics and Balance

Of the 864 original sample households, a subset of the treatment households from the
initial baseline survey (61 out of 558) did not have their soil samples tested due to con-
tamination or errors in the processing of the soil tests. In the followup surveys, treatment
farmers for whom soil testing could not be performedwere excluded from the data collec-
tion. The resulting experimental sample includes 497 treatment households (89 percent
of the original sampled households) and the control group consists of 306 households.

Table 2 presents selected summary statistics measured at baseline for control farmers,
treatment farmers that received tests and treatment farmers that did not receive soil tests
as well as balance tests for attrition. Columns 1 and 2 report the baseline means of de-
mographic characteristics and fertilizer application for the control and treatment groups,
respectively. The average farmer was overwhelmingly male and 45 years old. Nearly 40
percent of respondents were illiterate. Column 4 shows the p-values for the null hypothe-
ses of equality of means between the treatment (with tests) and the control and between
the treatment with tests and without tests. The table shows that there is good balance be-
tween the treatment and control groups. Out of the pairwise tests, we find the treatment
sample that had their soil tested had a slightly higher share of female headed households
(9 percent vs 5 percent). While these di�erences are not pivotal for the interpretation of
our results, we report results that control for observed covariates in the analysis to account
for lack of balance. The estimates of the treatment e�ect are robust to such inclusion, with
little di�erences in the point estimates or standard errors. Attrition between the treatment
and control group is analyzed at the bottom of Table 2. Overall, 10% of households could
not be matched to the endline data due to di�culties in locating the households. The null
of equality among treatment and control is not rejected at conventional levels.

Further, the di�erences between the subset of farmers for whom the soil testing was
not possible and the remaining treatment group are not statistically significant with the
exception of literacy and plot size. The subsample of treatment farmers without soil tests
had slightly lower literacy levels (57 percent 69 percent) and lower plot sizes (.43 hectares
vs .6 hectares). Conversations with the soil testing lab suggested that di�culties in the soil
tests were primarily due to too little soil being collected or due to contamination and were
likely random. Because we find some di�erences across these two baseline characteristics,
we use the bounding approach of Lee (2009) to construct upper and lower bounds for
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the treatment e�ect. In our context, attrition is due to di�culties in processing soil tests
for farmers, which is likely random but may be correlated with unobserved variables. To
analyze the robustness of our treatment e�ects to attrition, we construct the bounds by
trimming either the top or the bottom of the distribution of fertilizer usage for the treat-
ment groups by the relative di�erence in attrition rates between treatment and control.
We discuss the process further in Appendix A and present results in Table A3.

Throughout this paper, unless otherwise noted, the analysis is restricted to the large
majority of households that were present in the endline and that planted wheat during
the 2014/2015 rabiwheat season. Given that the analysis relies on fertilizer application on
wheat crops, we limit the sample to these households and report the balance tests in Table
3. As in the full baseline sample, the evidence in Table 3 shows that the treatment did not
result in di�erential selection out of planting wheat in the treatment and control groups
and that there is balance across the covariates. The share of farmers planting wheat was
roughly 85 percent in both the treatment and control, resulting in a final sample of 677
farmers.

3.4 Soil Test Results and Recommendations

The recommended doses of di�erent fertilizers are partly determined on the basis of avail-
able concentrations of di�erent nutrients as found in the chemical analysis of soil samples,
but are also conditioned by a target yield that is specific to a particular crop. One way to
think about the recommendations is that they provide advice on the application of nutri-
ents required to achieve a target yield, once the availability of nutrients in the soil is taken
into consideration. The basic recommended dose was based on a target wheat yield of 4
metric tons per hectare.25 With this target yield, the recommended dose of urea varied
from 232 to 297 kg per hectare while baseline application rates varied widely (mean of
210 kg, standard deviation of 86 kg). For phosphate (DAP), the recommended applica-
tion varied from 100 to 240 kg per hectare, and for potash, from 34 to 122 kg per hectare. In
our sample, 137 farmers received a recommendation to apply 20 kg per hectare of sulfur,
and 180 farmers received a recommendation to apply zinc at the rate of 25 kg per hectare.
Once applied, zinc remains available to crops for up to three cropping seasons, though
marginal returns on the application of zinc are higher if it is first applied to the rice crop
in a rice-wheat cropping system.

25While the recommendations provided by RAU assumed a target yield of 4 metric tons per hectare, in
reality, farmers’ “target” yields vary because of budgetary considerations and other factors constraining
productivity. The average yield at baseline was 25 percent lower than the target yield used as the basis for
recommendations (3.03 metric tons per hectare).
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Table 4 compares the recommendationswith data on actual fertilizer use from the base-
line survey. For urea and DAP, the average recommendation was 16 and 20 percent higher
than baseline application rates, respectively. The recommendation for MOP (potash) was
substantially higher, though only 29 percent of farmers applied MOP in the 2014 rabi sea-
son. Based on these target yields, more than 70 percent of farmers in our sample applied
less than the recommended dose of urea provided on the soil health cards in the baseline
survey and 84 percent applied less than the DAP recommendation. Farmers generally
applied less potash than the recommended dose, with average applications 69 percent
less than the calibrated recommendations. While RAU scientists recommended that most
farmers in our sample apply potash to their wheat crop at an average rate of 43 kg/ha,
only 149 treatment farmers applied potash to wheat. The application of secondary nutri-
ents and micronutrients was found to be very rare among sample farmers. For example,
one in four soil samples were found deficient in zinc and sulfur, but few farmers had ap-
plied zinc or sulfur in the previous season.

The di�erence between the baseline fertilizer application rates in rabi 2014 and the rec-
ommendations are presented in Figure 6. The figures suggest that a large proportion of
treatment farmers (42 percent) apply urea at a rate within 50 kg per hectare of the recom-
mended rate, but many treatment farmers are far from the optimal value, and may stand
to benefit from revising their fertilizer application behavior. The divergence between the
target and actual behavior may be due to a variety of factors including season specific
constraints, lower yield targets, and a lack of knowledge about optimal management of
inputs.

Due to the fact that soil tests were only collected for treatment farmers, we do not have
the associated values for control farmers. To overcome this challenge in estimating the
treatment e�ects on responsiveness, we use the fertilizer recommendations for treatment
farmers to predict the values for control farmers. To do so, we regress the urea recom-
mendations on baseline yields and measures of soil quality including the slope, soil type,
erosion and their interactions as well as block level fixed e�ects. These controls explain
72 percent of the variation in the recommended urea application rates. Figure 8 plots the
relationship between the predicted values and actual urea application rates for the treated
sample. Roughly 90 percent of the predicted recommendations are within 5 kilograms
per hectare of the actual recommendations which represents less than a 3 percent di�er-
ence. A comparison of the average predicted urea application recommendations in Table
2 shows that they are 3.6 percent higher in the control group, though the di�erence is not
significant.
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4 Results

In this section, first we provide evidence about the impacts of farmers’ beliefs on demand
for soil testing. Second, we present the results of the soil health card intervention and
document limited impacts of the treatment on fertilizer usage and other input usage. We
then test whether the strength of farmers’ subjective beliefs a�ects responsiveness to the
soil health cards.

4.1 Do beliefs a�ect demand for information on input usage?

Howdo farmers’ beliefs a�ect demand for soil testing and recommendations? The answer
is important both for understanding the targeting of information interventions and for the
optimal pricing and profitability of private soil testing. Figure 10 plots the non-parametric
relationship between farmers’ stated willingness to pay for soil health cards relative to the
coe�cient of variation in prior beliefs about optimal fertilizer usage. The WTP is increas-
ing in the dispersion in beliefs about urea application rates (Panel A), meaning that farm-
ers with less strong priors about optimal input usage have a higherWTP for the soil health
cards. WTP increases from $1.5 for farmers with the strongest priors and to $2.4 for those
with the weakest priors. The same relationship is observed for the dispersion in farmers’
beliefs about DAP application rates (Panel B).

If farmers place lessweight on their priors, thenWTP should be larger for less confident
farmers. Similarly, if farmers value accurate information, WTP should be larger the more
informative the signal is perceived to be. To test the impacts of confidence and trust on
willingness to pay for fertilizer recommendations, we estimate farmers’ stated willingness
to pay for soil testing elicited during the baseline survey using OLS as follows :

WTPiv = ↵ + �1Confidenceiv + �2Trustiv +X
0

iv� + ⌧v + eiv (21)

where WTPiv is the stated willingness-to-pay for soil tests by farmer i in village v. In
the following estimations we use the standard deviation of the beliefs distributions (con-
trolling for the mean) as the measure of confidence (Confidenceiv). We include a binary
measure of trust in extension agents (Trustiv) to control for perceived signal accuracy. As
controls, we including ability (Abilityiv) which classifies households into high, medium,
and low ability based on the di�erence between the realized yield in rabi 2013 and the
yield they should have achieved given their observed fertilizer application. Further, base-
line beliefs may be correlated with numerous factors that influence demand, including
prior farming experience, age, socio-economic status, and cognitive ability. To control for
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these omitted factors which can confound the impact of baseline beliefs on information
demand, we include a vector of farmer characteristics including the age, education, and lit-
eracy of the household head as well as measures of householdwealth. Further, we include
controls for household risk aversion, as well as household wealth and access to credit. In
all regressions we report standard errors clustered at the village level and include village
fixed e�ects (⌧v).

Table 5 presents the OLS results forWTP for soil tests. We find that on average, farmers
with more disperse priors about optimal urea application rates have higher WTP than the
more confident farmers. Column 1 demonstrates that WTP is increasing in the standard
deviation of beliefs about optimal urea. A standard deviation increase in dispersion (0.17)
is associated with a rise in willingness to pay by an average of $0.34, or 17 percent of
the price of a SHC at the time of testing.26 These results are robust to the inclusion of
baseline characteristics including wealth, ability, and risk aversion, as shown in column 2
and similar to those using measures of dispersion of beliefs about DAP (columns 3 and
4). Overall, these results demonstrate that less confident farmers in Bihar may be aware
of their potential knowledge gaps and demand information about decisions they make
regularly, even after controlling for individual levels of experience, ability, and trust in the
source of information.

Farmer trust in extension services is positively correlated with WTP across the models
but is not significant at conventional levels Thus, the subjective informativeness of the SHC
does not appear to a�ect farmers’ demand ex-ante. However, literacy increases demand for
the SHCs by between $0.58 and $0.73. Farmers that are unable to readmay anticipate inter-
preting the cards incorrectly, suggesting that literacymay be important in farmer decisions
to purchase or utilize soil testing and/or fertilizer recommendations. This has important
implications, as extension agents are a primary source of ’o�cial’ advice on inputs, tech-
nologies, and practices, and will have to allocate additional e�ort to communicating the
value of soil tests to illiterate farmers. While we cannot rule out experimenter demand
e�ects due to the hypothetical nature of the willingness to pay (De Quidt et al., 2018),
which may be worsened if the e�ects are correlated with confidence, the estimates are
quantitatively similar with and without enumerator fixed e�ects. Further, the results us-
ing actual investment choices in the following section suggest that confidence and trust

26For comparison purposes, at the time of the survey, the price of SHCs from existing facilities was slightly
above $2.00 though there was little availability. The average WTP amongst treatment farmers was $1.61.
Additionally, we can compare the mean WTP in our study with the results other papers that elicit WTP for
information amongst farmers using incentivized measures. Those studies tend to find similar valuations in
a variety of contexts: $2 for a 9-month interactive extension advice in Gujarat (Cole and Fernando, 2016), 2
GhC/month for nutrition based agricultural information in Ghana (Palloni et al., 2018)
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lowers responsiveness to the SHC.
Taken together, these estimates are consistent with the theoretical model and high-

light economically significant heterogeneity in farmers’ beliefs on demand for informa-
tion. While this result follows from a standard model of belief updating, recent empirical
evidence on information demand finds that agents may also vary in their taste for in-
formation, in which case farmers with higher belief precision could potentially demand
information regardless of whether they plan to use it (Fuster et al., 2018). We do not find
evidence that this is the case in our context. Further, we find that literacy may act as a
barrier to adoption of SHCs, as illiterate farmers have a lower WTP for SHCs in the base-
line survey. These findings provide further justification for using complementary low-cost
information dissemination methods in contexts with a high share of illiterate farmers, in-
cluding audio and video supplements, that reinforce information provided on soil health
cards (Cole and Sharma, 2017).

4.2 Impacts of SHCs

We estimate the intention-to-treat (ITT) e�ects of receiving the soil health card on endline
fertilizer using an ANCOVA specification.27 Our main specification uses the endline data
and controls for the baseline value of the outcome of interest when available. We estimate
the treatment e�ects for the full experimental sample, as well as for farmers that only
planted wheat in the endline.28

We estimate the treatment e�ects using the following specification:

yivb = �0 + �1Tivb + �2yivb0 +X
0

ivb0� + µb + ✏ivb (22)

where yivb is the outcome of interest on the treated plot at endline. Our primary outcomes
are fertilizer application rates measured in kg per hectare by farmer i from a village v

in block b. We estimate the treatment e�ects separately for the three fertilizers on the
SHC: urea, DAP, and MOP, as well as an indicator for if the farmer applied MOP. We also
estimate the impact of the soil health cards on yields (quintals/ha) and trust. Tiv is a binary
treatment indicator indicating receipt of the SHC, yivb0 is the values of the outcome at
baseline. Where indicated, we includeXivb0 a vector of individual and household baseline

27Including baseline values of the outcome variable increases the power of the estimator relative to
di�erence-in-di�erences estimators when auto-correlation is low and allows for di�erences in the measure-
ment of baseline variables (McKenzie, 2012).

28Table 2 shows a comparison of means for whether households planted wheat in the endline by treat-
ment group. T-tests of the di�erence in means shows that there was no di�erential selection out of wheat
production in the treatment group.
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characteristics including gender, age, literacy, landholding size, and size of the treatedplot,
to increase precision and control for any baseline imbalances. In all regressionswe include
are block (strata) fixed e�ects (µb) and report standard errors clustered at the village level
(the unit of randomization).

4.2.1 Fertilizer response to targeted fertilizer recommendations

Table 6 shows the main estimates of the impact of soil health cards on average fertilizer
usage amongst farmers that planted wheat in the endline. As discussed in Section 3.4,
the recommendations for urea and DAP may be higher or lower than farmers’ baseline
application rates (Figure 6) but in general, they tend to be higher, especially for DAP.

Focusing on the impacts on urea usage, column 1 shows that treatment farmers applied
12.7 kg more urea per hectare on their plots and the di�erence is significant. This implies
a 6 percent increase in urea application rates in the treatment group relative to the control
group. However, adding controls reduces the treatment e�ect by half and it becomes in-
significant. In contrast, columns 3 and 4 show that the treatment led to declines in DAP
usage by roughly 5 percent but the e�ect is not significant. Similarly, while the likelihood
of potash (MOP) application increased by 8 percentage points relative to the control mean
there was no significant impact of the treatment on total MOP usage. If farmers were re-
sponsive to the recommendations based on the 4 metric ton per hectare target yield, then
we should expect to see increased application of all three fertilizers. However, on average
the estimates suggest that the soil recommendations induced a relatively small increase in
urea application rates and amarginal increase on the likelihood of using potash fertilizers.

Appendix Table A2 reports the intention-to-treat e�ects for the full experimental sam-
ple. The coe�cients for the treatment e�ect on urea usage are twice as large than for the
sample of farmers that planted wheat, and are significant with and without controls. The
coe�cients for the treatment e�ect on DAP and MOP usage are small in magnitude and
insignificant across the estimations, with the exception of the likelihood of applying MOP
which increased by 8 percentage points amongst farmers that received the soil health card.

Taken together, we find a slight increase in fertilizer usage due to the soil health card in-
tervention on average but the intervention did not have a significant impact on application
rates of the other recommended fertilizer inputs. This e�ect may be partially driven by the
fact that because these recommendations were tailored to individual farmers, some farm-
ers received recommendations that were below and some received recommendations that
were above their normal fertilizer application rates. Amongst treatment farmers, 65 per-
cent received recommendations that were above both planned urea and DAP usage, and
10 percent received recommendations below both planned urea and DAP usage (Figure

27



7). 85 percent of farmers received a recommendation to use more DAP, which amounted
to 62 kg per hectare more than their planned usage. Only 8 treatment farmers were rec-
ommended to apply lessMOP than they planned, and nearly half of the treatment farmers
did not report plans to apply MOP. Thus, it is unlikely that this e�ect is driven purely by
the treatment inducing comparable increases and decreases in fertilizer usage.

A second explanation for the attenuated e�ect of the treatment onDAP andMOPusage
is related to the costs of fertilizers. While urea continues to be highly subsidized in Bihar,
subsidies in DAP and MOP declined in the years prior to the intervention. When farmers
were askedwhy they did not adapt their input usage to the recommendations, themajority
in all cases stated that they believed the usual amount that they use is correct. However,
the secondary reason for applying less than the recommended amounts of DAP andMOP
were monetary. Roughly 40 and 36 percent of farmers cited cost as an impediment to DAP
and MOP usage, respectively.

These results complement those found by Harou et al. (2019), who show that plot-
specific soil tests increased fertilizer usage from low baseline adoption in Tanzania only
when accompanied by vouchers for purchase. In our case, the soil health cards increased
urea usage which is relatively cost free, but had no e�ect on DAP (a more costly fertilizer)
and a marginal e�ect on MOP. These results highlight the potentially negative e�ects of
providing information that targetsmultiple inputswhen farmers face di�erent costs across
the inputs andhave to trade o� the perceived benefits of the informationwith costs of input
usage.

4.2.2 SHC impacts on yields and trust

The soil health cards specifically targeted fertilizer usage with the goal of improving more
balanced fertilizer usage rather than increased yields. Given that the overall treatment
e�ect suggests an average increase in urea application with little change in other fertilizer
inputs, the treatment may have increased yields for treatment farmers if yields respond
only to urea application. Table 7 reports the e�ects of the treatment on endline wheat
yields in the 2014 rabi season using the ANCOVA regression specified above. Columns 1
and 2 show that the treatment had no significant impact on wheat yields. The coe�cient
suggests a 6 percent decrease in wheat yields, though the e�ect is imprecisely estimated,
including when controls for inputs and wealth are included. While it is reassuring that
yields did not decrease significantly due to the receipt of the SHC, the previous results
suggest that they may have worsened fertilizer imbalances which can lower yields in the
long run while also leading to increased groundwater contamination.

One potential downside of the lack of improved yields is that the credibility of infor-
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mation from extension agents may decline due to perceived inconsistency of the informa-
tion that was provided. While the extension agents that delivered the soil tests clearly
explained to farmers the need for more balanced fertilizer usage, the estimated e�ect of
the SHC suggests that farmers may have adjusted fertilizer usage, particularly urea, to
increase their yields. In columns 3-6, we find evidence that the SHC treatment actually
makes farmers less likely to trust information provided by extension agents. In particular,
the SHC reduces a binary measure of trust in extension agents by 11 percentage points, a
30 percent decrease in trust, amongst the overall experimental sample. When we restrict
the sample to farmers that planted wheat, the e�ect is even larger. The SHC reduces trust
amongst these farmers by 14 percentage points. Rather than increasing the credibility in
extension agents and the government in general, farmers place less faith in new informa-
tion after the provision of scientific information. This is particularly concerning given the
results in the following section which show that trust in the credibility of information is a
significant determinant of responsiveness to the SHC recommendation. Extension agents,
and governments in general, frequently face a tradeo� between conveying new informa-
tion that updates previous recommendations about agricultural practices and possibly
losing credibility as a result of inconsistent messaging. One way proposed in the liter-
ature to improve the credibility of information is through the use of scientifically based
recommendations or demonstrations, such as using microscopes to demonstrate the exis-
tence of disease causing microbes (Bennett et al., 2018). However, these results suggest
that when communicated through an existing institution with low initial trust, inconsis-
tency in messaging or a lack of verifiable results can have an adverse e�ect on credibility.

4.3 Di�erential responsiveness to soil health cards

This section examines the role of confidence and trust on responsiveness to the soil health
card recommendations. We interact treatment status with the dispersion of baseline be-
liefs and trust to test whether they lower responsiveness to the SHC and to estimate the
relative magnitude of the e�ects. A negatively signed interaction between receipt of the
SHC and prior belief dispersion is evidence that farmers with more confidence farmers
place relatively less weight on their planned input usage and move closer to the recom-
mendation. Confidence may be correlated with farmer ability and other characteristics
that influence initial beliefs and learning including age and education. We control for
these factors which threaten to confound the interaction between the treatment and prior
beliefs and to isolate the impact of confidence on responsiveness to the SHC recommen-
dations.
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Our measure of responsiveness (↵) is the absolute di�erence between the predicted
recommendation and farmers’ endline fertilizer application.29 This measure captures the
degree to which farmers move their input usage towards the information provided in the
soil health card. To test the impacts of confidence on responsiveness to the SHC, we esti-
mate the following equations for farmers that planted wheat using OLS to estimate :

↵ivb = �0+�1Tivb+�2Confidenceivb+�3Tivb ⇤Confidenceivb+�4Trustivb+ ⌧b+uivb. (23)

↵ivb = �0 + �1Tivb + �2Trustivb + �3Tivb ⇤ Trustivb + �4Confidenceivb + ⌧b + uivb. (24)

where (↵ivb) is the responsiveness to the SHC urea recommendation for farmer i in
village v, confidence (Confidenceivb) is measured as the standard deviation of the beliefs
distributions and (Trustiv) is a binarymeasure of trust in extension agents. To test for het-
erogeneity in responsiveness to the test, we include interactions between the treatment,
confidence, and trust as well as a triple interaction between the three. We include indi-
vidual and household characteristics including wealth, ability, and risk aversion, as well
as block fixed e�ects, and standard errors are clustered at the village level. The sample
includes all treatment farmers that planted wheat in rabi 2014.

Table 8 reports regression results for the di�erential e�ects of the SHC on responsive-
ness by confidence and trust. The e�ect of the treatment on responsiveness is negative
(column 1), meaning that treatment farmers’ endline urea application was closer to the
recommendation, though the e�ect is not significant. Column 2 includes the interaction
between the SHC treatment and the standard deviation of farmers’ priors. Farmers in
the control group with low levels of confidence are further away from recommendation.
However, less confident farmers in the treatment group are substantially more respon-
sive to the SHC recommendation for urea usage. The interaction between confidence and
treatment (column 2) implies that a standard deviation increase in belief dispersion in-
creases responsiveness by 8 percentage points, or 11 percent. Similarly, control farmers
that report trusting advice from extension agents prior to seeing evidence of its e�ective-
ness are 16 percent further away from than urea recommendations. But when provided
with information, farmers that trust advice from extension agents are 25 percent more re-
sponsive. In column 4, we include the triple interaction between confidence, trust, and
the treatment to test whether confidence limits responsiveness to the SHC even amongst
farmers that have a high amount of trust in advice from extension agents. The e�ect of con-
fidence on responsiveness is substantially larger for farmers with high trust than with low
trust. Comparing the di�erential e�ect of confidence between low trust and high trust

29See Section 3.4 for details on the predicted fertilizer recommendation rates
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farmers implies that farmers with a standard deviation lower confidence are 26 percent
more responsive to the signal. Taken together, these findings indicate that confidence fur-
ther moderates responsiveness to information even amongst farmers with higher levels of
trust in the source of the information. These e�ects support the argument that informa-
tion interventions may be less e�ective when the beneficiaries do not trust the source of
the information or have low trust in institutions in general. These magnitudes are quite
large and suggest that a subset of farmers may be delaying their implementation or adop-
tion of advice to wait and see how e�ective the advice is, akin to strategically delaying
technology adoption (Bandiera and Rasul, 2006).

Overall, we see that farmers that are less confident about their agricultural decisions
have a higher willingness to pay for soil testing and recommendations. We interpret these
results to suggest that less confident farmers in Bihar demand information outside of their
own experience or the information towhich they typically have access. Further, when pro-
vided with recommendations from the soil tests, less confident farmers were more likely
to adjust their input use in the direction of the recommendation and are more respon-
sive to the urea recommendations as predicted by the model. In addition to confidence,
farmers trust in advice from the source of the information, extension agents, does not af-
fect demand for information. But when provided with information and making actual
investment choices, lack of trust diminishes responsiveness.

4.4 Self-Reported Explanations

In the endline survey, we asked farmers whether they had retained the SHCs that were
distributed prior to the rabi season, and whether they had consulted them in making fer-
tilizer application decisions. While 93 percent of farmers claimed to have kept the SHCs,
only 56 percent were able to locate the SHCs and show them to enumerators, and only 25
percent reported having consulted the SHCs.

We then asked farmers to report how much of di�erent fertilizers they had applied
relative to the recommendation: the recommended amount, more than the recommended
amount, or less than the recommended amount. Farmers that self reported having ap-
plied more or less than the recommended amount were then asked why they did so. The
results, presented in Table 9, suggest that trust in their own input choices over the recom-
mendations is a crucial factor, with most farmers indicating a belief that their preferred
amount was the correct amount and that the scientific recommendations were incorrect.
Sixty six percent of the farmers who reported having used more than the recommended
amount of urea and 58 percent of those who used less than the recommended amount of
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urea said they did so because they did not want to change their behavior from previous
seasons. We observe similar trends for DAP and potash. A similar proportion of farmers
that reported having used more than the recommended amount of fertilizers said they
believed yields would be reduced if they applied less.

Farmers that reported having applied less than the recommended amount also cited
fertilizer cost as a factor, especially for DAP and potash, which are not as heavily subsi-
dized as urea, and hence considerably more expensive. Liquidity constraints thus appear
to be a barrier to more balanced fertilizer application. For example, 38 percent of farmers
that used less than the recommended amount of DAP and potash said they did so because
they did not have enough money or because these fertilizers were too expensive. Interest-
ingly, despite the high urea subsidy often being blamed for the overapplication of urea,
only 3 percent of farmers who appliedmore than the recommended dose of urea said they
did so because it was inexpensive.

5 Conclusions

In this paper, we investigate how the strength with which agents hold beliefs and their
trust in the information source a�ect the responsiveness to scientifically derived advice.
To do so, we evaluate a randomized controlled trial in three districts of Bihar that pro-
vided soil health cards (SHCs) to farmers based on individualized soil tests to promote
balanced use of fertilizers. Though not identical in the implementation, the provision of
soil tests closelymirrored the operational approach of a large scale government soil testing
program in India that intended to provide more than 145 million SHCs covering all plots
and farmers in India, with farmers expected to receive a new SHC every three years. To
evaluate the feasibility of wide spread soil testing in Bihar, our experimental approach en-
abled us to test whether farmers would change their fertilizer use pattern after receiving
fertilization recommendations based on soil tests from their own farm plots.

Our results suggest that on average, farmers largely ignore the soil test results and
fertilizer use recommendations contained in the SHCs. The impact of the SHCs on urea
application was small (around a 6 percent increase) andmarginally significant but had no
e�ect on DAP. Due to the high subsidy rate of urea in this region, these findings suggest
that credit or liquidity constraints are not likely a major reason for not attending to the
scientific recommendations with respect to urea and points toward informational factors
or behavioral biases as the primary culprit. However, the lack of response to the DAP
and MOP recommendations may be at least partially due to other factors including either
liquidity constraints, crowding out e�ect of the urea recommendations, or a combination
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of both.
To rationalize these finding, we document significant heterogeneity in beliefs about

optimal applications of urea and DAP prior to receiving information. Consistent with the
model’s predictions, we show that confidence is associated with lower demand for SHCs
and lower responsiveness to the recommendations provided on the SHCs. When pro-
vided with recommendations from the soil tests, less confident farmers were more likely
to adjust their input use in the direction of the recommendation and are more responsive
to the urea (but not DAP) recommendations. Further, we show that farmers that have a
greater degree of trust in advice provided by agents from the national extension system
are substantially more responsive to the recommendations.

Our findings relate to a larger literature in both developing and developed countries
that identifies subjective beliefs as predictive of behavior in a variety of settings includ-
ing insecticide treated mosquito nets (Tarozzi et al., 2014), college choice (Wiswall and
Zafar, 2015), and investment decisions in children’s education (Dizon-Ross, 2019). Addi-
tionally, we provide further evidence in the support of research on the role of confidence
in demand and usage of information (Ho�man, 2016) and highlight a source of observed
heterogeneity that can undermine the e�cacy of information interventions (Bennett et al.,
2018).

From a policy perspective, our results highlight potential heterogeneity in who is most
likely to respond to expert information, with implications for interventions such as India’s
‘Soil Health Card’ scheme. There have been few studies that consider how people vary in
their responsiveness to information, especially based onmeasurable characteristics. Taken
together, the results suggest that less confident farmers in Bihar both are most likely to re-
spond and stand to benefit the most from targeted soil test recommendations either (1)
when the goal is to increase urea usage and yields (2) or when the goal is to limit urea us-
age while maintaining current practices. With respect to policy, it is important to consider
this heterogeneity because policymakers may have cost constraints and face di�cult iden-
tifying beneficiaries who have both a high value of information and are likely to respond.
Our results show that pilot surveys that assess whether confidence, and therefore respon-
siveness to information, is correlated with a higher marginal value of the information can
be helpful to determine the potential value of similar information interventions. Further,
if there are cost constraints to providing information, such as in the case of testing soils in a
laboratory, identifying and targeting low confidence/high marginal value of information
respondents may produce the highest returns to the program’s investment.

33



Appendix A. Robustness to Attrition

Attrition in the study comes primarily from soil tests in the treatment group that could
not be processed (due to contamination or insu�cient sample size) or from being unable
to locate households in the endline survey. Appendix Table 3 provides attrition rates by
treatment group for the experimental sample. Recall that we eliminated households from
the endline that did not have their soil tested. As a result, 11 percent of the original treat-
ment sample is not present in the endline survey due to testing, while another 10 percent
of the remaining sample is not present in the endline due to not being able to followup in
the endline (11 percent in control and 7 percent in treatment).

To examine how robust our results are to attrition, we use the bounding approach of
(Lee, 2009) to construct upper and lower bounds for the treatment e�ect. We construct
the bounds by trimming either the top or the bottom of the distribution of fertilizer appli-
cation rates for the treatment groups by the relative di�erence in attrition rates between
treatment and control. To examine the impact of attrition on our results, we estimate the
bounds of the ITT e�ect for the full sample of farmers without limiting to those that do
not plant wheat in the endline. Table A3 shows the results of estimating these Lee bounds
which can be compared directly with Table A2. Column 1 provides the trimmed estimates
for endline urea application rates which correspond to columns 2 in Table A2. The esti-
mates of the treatment e�ect lie between the bounds estimated in column 1 using OLS.
The parameter estimates are much closer to the upper bounds than the lower bounds. In
this case, the lower bounds would occur only if treatment farmers that apply low amounts
of urea attrit. However, in Table 2, a comparison of variables that were correlated with at-
trition suggest that only literacy and plot size are statistically di�erent from the remaining
treatment group. A regression of fertilizer application rates on baseline characteristics in
the control group suggest that literacy has no impact on fertilizer application rates. Larger
plot sizes tend to have higher fertilizer application rates, though the e�ect is not significant
at the 10 percent level.
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Figure 1: Location of Sample Districts in Bihar, India

Figure 2: Timeline of Data Collection
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Figure 3: Example: Soil Health Card (Translated)

Figure 4: Percentage of Beans Allocated to Fertilizer Ranges (Kg/Kattha)

(a) Urea (b) DAP
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Table 1: Correlations Across Confidence Measures

Variables CV Urea CV DAP Same/lower Same/more
yields doubts

CV Urea 1.000
CV DAP 0.353⇤⇤⇤ 1.000
Same/lower yields 0.273⇤⇤⇤ 0.147⇤⇤⇤ 1.000
Same/more doubts 0.140⇤⇤⇤ 0.070⇤⇤ 0.469⇤⇤⇤ 1.000

⇤ ⇤ ⇤ p<0.01 ⇤⇤ p<0.05 ⇤ p<0.10

Notes: This table reports correlations between measures of confidence elicited during the initial baseline
survey. The coe�cients of variations are calculated by dividing the mean by the standard deviation of the
subjective belief distributions of Urea and DAP.
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Table 2: Descriptive Characteristics and Balance Across Treatment Arms

(1) (2) (3) T-test
Control Treatment No Test P-value

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE N/[Clusters] Mean/SE (2)-(1) (2)-(3)
Age 306

[17]
46

(.84)
497
[31]

45
(.73)

61
[20]

44
(1.8)

.24 .6

Female 306
[17]

.052
(.012)

497
[31]

.085
(.014)

61
[20]

.15
(.052)

.088* .23

Literacy 306
[17]

.65
(.046)

497
[31]

.69
(.029)

61
[20]

.57
(.056)

.44 .068*

Trust 306
[17]

.31
(.029)

497
[31]

.31
(.021)

61
[20]

.28
(.077)

.89 .66

Mean Urea 306
[17]

3
(.12)

494
[31]

3
(.072)

61
[20]

3
(.17)

.87 .73

SD Urea 306
[17]

.44
(.02)

494
[31]

.4
(.014)

61
[20]

.39
(.031)

.13 .62

Mean DAP 301
[17]

1.5
(.075)

490
[31]

1.6
(.045)

61
[20]

1.5
(.1)

.92 .31

SD DAP 301
[17]

.28
(.015)

490
[31]

.26
(.011)

61
[20]

.26
(.02)

.39 .95

WTP for soil test (USD) 306
[17]

1.7
(.24)

493
[31]

1.6
(.17)

61
[20]

1.5
(.36)

.87 .57

Plot size (ha) 306
[17]

.57
(.05)

497
[31]

.6
(.065)

61
[20]

.43
(.067)

.68 .064*

Kharif Urea (kg/kattha) 302
[17]

3.1
(.17)

465
[31]

3.1
(.14)

59
[20]

3.1
(.15)

.9 .91

Kharif DAP (kg/kattha) 297
[17]

1.5
(.069)

457
[31]

1.6
(.051)

58
[20]

1.6
(.11)

.17 .55

Predicted Urea rec. 306
[17]

243
(5.6)

491
[31]

245
(2.9)

60
[20]

246
(5.9)

.84 .75

Predicted DAP rec. 306
[17]

158
(11)

491
[31]

165
(5.9)

60
[20]

173
(11)

.55 .42

Attrition 306
[17]

.89
(.058)

497
[31]

.93
(.016)

Plant wheat endline 306
[17]

.8
(.055)

497
[31]

.87
(.019)

Author’s calculations from baseline data. The unit of observation is the household head for individual spe-
cific characteristics and the household for household level characteristics. The sample consists of all house-
holds that were present at the baseline. Di�erences in the number of observations across these variables
are explained by missing entries during the data collection. Fertilizer application rates are reported in kilo-
grams per hectare. The p-values in column 5 are for tests of the null of equal means across treatment arms
(robust to intra-village correlation). DAP is diammonium phosphate. Asterisks denote test significance: ***
p<0.01, ** p<0.05, * p<0.1.
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Table 3: Summary statistics across treatment groups at baseline for households that
planted wheat.

(1) (2) T-test
Control Treatment P-value

Variable N/[Clusters] Mean/SE N/[Clusters] Mean/SE (2)-(1)
Age 245

[52]
47
(1)

432
[86]

45
(.74)

.26

Female 245
[52]

.053
(.012)

432
[86]

.081
(.015)

.15

Literacy 245
[52]

.63
(.044)

432
[86]

.69
(.026)

.28

Trust 245
[52]

.31
(.029)

432
[86]

.31
(.023)

.99

Mean Urea 245
[52]

3
(.11)

431
[86]

3.1
(.069)

.51

SD Urea 245
[52]

.43
(.018)

431
[86]

.4
(.013)

.17

Mean DAP 240
[50]

1.6
(.075)

427
[85]

1.6
(.039)

.86

SD DAP 240
[50]

.27
(.013)

427
[85]

.26
(.009)

.46

WTP for soil test (USD) 245
[52]

1.5
(.19)

430
[86]

1.6
(.15)

.65

Plot size (ha) 245
[52]

.59
(.044)

432
[86]

.6
(.068)

.82

Kharif Urea (kg/kattha) 242
[52]

3
(.18)

405
[85]

3.1
(.13)

.64

Kharif DAP (kg/kattha) 237
[50]

1.5
(.069)

397
[83]

1.6
(.051)

.33

Predicted Urea rec. 245
[52]

243
(5.4)

426
[86]

244
(2.3)

.91

Predicted DAP rec. 245
[52]

160
(10)

426
[86]

164
(4.9)

.74

Author’s calculations from baseline data. The unit of observation is the household head for individual spe-
cific characteristics and the household for household level characteristics. The sample consists of all house-
holds that were present at the baseline and andline and planted wheat in the 2014 rabi season. Di�erences
in the number of observations across these variables are explained bymissing entries during the data collec-
tion. Fertilizer application rates are reported in kilograms per hectare. The p-values in column 5 are for tests
of the null of equal means across treatment arms (robust to intra-village correlation). DAP is diammonium
phosphate. Asterisks denote test significance: *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Summary statistics of recommendations - Target yield (4T/Ha)
Mean Std. Dev.

BL urea 207.0 85.5
Recommendation Urea 243.5 28.1
BL DAP 116.8 33.7
Recommendation DAP 165.5 35.1
BL MOP 35.5 17.4
Recommendation MOP 82.4 19.8
Observations 488

The sample includes only treatment farmers that had their soil tests processed and delivered. All values
reported in kilograms per hectare (kg/ha). BL denotes fertilizer application rates in baseline. Rec denotes
recommended fertilizer application rate from soil tests.

Figure 5: Fertilizer application relative to mean of beliefs about optimal fertilizer applica-
tion

(a) Urea (b) DAP

Notes: Authors’ calculations. The X-axis shows the mean of the elicited beliefs distribution of optimal fer-
tilizer application rates for each farmer. Fertilizer application rates in kharif 2014 (kg/kattha) are plotted
using a locally polynomial smoothing regression with an Epanechnikov kernel (bandwidth = 0.12). The
95% confidence intervals account for clustering by village.

45



Figure 6: Density of Di�erence Between Baseline Fertilizer Application Rates and Recom-
mendation (Kg/Ha)

(a) Urea (All blocks) (b) DAP (All blocks)

Figure 7: Joint density of di�erences between SHC recommendations and baseline fertil-
izer applications rates (Kg/Ha)

The sample includes only treatment farmers that had their soil tests processed and delivered. All values re-
ported in kilograms per hectare (kg/ha). Planned urea and DAP denote farmers reported planned fertilizer
application rates in 2014 rabi. Recommendation denotes recommended fertilizer application rate from soil
tests.
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Figure 8: Predicted urea recommendations relative to actual urea recommendations
(Kg/Ha)

Notes: Predicted urea recommendations are plotted relative to actual fertilizer recommendations using a
locally polynomial smoothing regression with an Epanechnikov kernel (bandwidth = 0.12). The 95% con-
fidence intervals account for clustering by village;

Figure 9: Willingness to pay for soil health cards.

Notes: Authors’ calculations. StatedWTP is reported in US dollars; SHC = soil health card; WTP =willing-
ness to pay.
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Figure 10: Willingness to pay for SHC

(a) Urea (b) DAP

Notes: StatedWTP is plotted using a locally polynomial smoothing regressionwith an Epanechnikov kernel
(bandwidth = 0.12). The 95% confidence intervals account for clustering by village; CV = Coe�cient of
variation; SHC = soil health card; WTP = willingness to pay.
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Table 5: E�ects of confidence on willingness to pay for SHCs
(1) (2) (3) (4)
WTP WTP WTP WTP

SD Urea 2.53*** 2.49***
(0.52) (0.52)

SD DAP 4.58*** 4.66***
(0.98) (0.96)

Trust 0.25 0.26 0.27 0.29
(0.20) (0.20) (0.18) (0.18)

Literacy 0.73*** 0.59*** 0.72*** 0.58***
(0.20) (0.19) (0.22) (0.20)

Constant 1.18** 1.19** 1.12** 1.29**
(0.52) (0.47) (0.53) (0.59)

Observations 731 731 722 722
Adjusted R2

Mean dep. var 1.66 1.66 1.67 1.67

Note: Dependent variable is statedwillingess to pay for soil testing and recommendations ($US). The sample
includes all farmers that were present in the endline survey. The SD of urea and DAP beliefs are measures
of farmer confidence calculated from their subjective beliefs distributions. Standard errors (adjusted for
clustering at the village level) in parentheses. All regressions contain village fixed e�ects and controls for age
and gender. Additional control variables in columns 2 and 4 include ability, household size, CRRA, whether
the household head remembered which plot was tested, house value, whether the household owned cattle,
whether the household owned the tested plot, whether the household owned an irrigation pump, whether
the household had access to credit during rabi 2013. * Significant at 10 percent level; ** Significant at 5 percent
level; *** Significant at 1 percent level.
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Table 6: Impacts of the SHC treatment on fertilizer application rates for farmers that
planted wheat

(1) (2) (3) (4) (5) (6) (7) (8)
Urea Urea DAP DAP MOP MOP MOP=1 MOP=1

SHC 12.7** 5.40 -6.61 -8.40 2.63 0.56 0.078* 0.050
(5.62) (8.33) (5.04) (6.03) (1.67) (1.80) (0.045) (0.046)

Controls No Yes No Yes No Yes No Yes
Observations 650 650 650 650 650 650 650 650
Adjusted R2 0.278 0.278 0.211 0.214 0.463 0.464 0.556 0.554
Mean dep. var 205.6 205.6 118.9 118.9 18.3 18.3 0.45 0.45

Notes: Dependent variables in columns 1-6 are endline fertilizer application rates (kg/ha). All columns
report the estimates from a regression of the endline fertilizer application rates on receipt of the soil health
card treatment, baseline outcome variables, block fixed e�ects, and enumerator fixed e�ects. Standard errors
adjusted for clustering at the village level in parentheses. * Significant at 10 percent level; ** Significant at 5
percent level; *** Significant at 1 percent level.
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Table 7: Impacts of the SHC on yields and trust.
(1) (2) (3) (4) (5) (6)
Yield Yield Trust Trust Trust Trust

SHC -0.24 -0.29 -0.11** -0.11* -0.14*** -0.13**
(0.29) (0.33) (0.044) (0.057) (0.047) (0.060)

Block FE Yes Yes Yes Yes Yes Yes

Controls No Yes No Yes No Yes
Observations 650 650 735 735 650 650
Adjusted R2 0.068 0.089 0.141 0.152 0.157 0.166
Mean dep. var 3.81 3.81 0.41 0.41 0.45 0.45

Notes: The dependent variable in columns 1& 2 are the endline yieldsmeasured in quintals per hectare. The
dependent variable in columns 3-6 is a binary measure of endline trust in extension services. All columns
report the estimates from a regression of the dependent variables onr eceipt of the soil health card treatment
and block fixed e�ects. Controls are includedwhere indicated. Standard errors adjusted for clustering at the
village level in parentheses. * Significant at 10 percent level; ** Significant at 5 percent level; *** Significant
at 1 percent level.
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Table 8: Impacts of the SHC treatment on urea responsiveness
(1) (2) (3) (4)

SHC -5.56 16.9 0.21 2.01
(5.16) (11.8) (5.75) (14.4)

SD Urea 45.0** 12.1
(21.0) (25.0)

SHC ⇥ SD Urea -52.1** -3.63
(25.0) (31.8)

Trust=1 12.9* -30.6*
(7.38) (15.6)

SHC ⇥ Trust=1 -19.4** 38.1*
(9.15) (19.5)

Trust=1 ⇥ SD Urea 88.9*
(44.6)

SHC ⇥ Trust=1 ⇥ SD Urea -121.3**
(52.4)

Constant 77.0*** 67.2*** 73.2*** 68.0***
(4.03) (14.7) (3.99) (11.7)

Observations 650 650 650 650
Adjusted R2 0.097 0.101 0.099 0.107
Mean dep. var 77.4 77.4 77.4 77.4

Notes: The dependent variable is the absolute di�erence between the predicted recommendation and farm-
ers’ endline fertilizer application. All columns report the estimates from a regression of the dependent
variables on receipt of the soil health card treatment and block fixed e�ects. Standard errors adjusted for
clustering at the village level in parentheses. * Significant at 10 percent level; ** Significant at 5 percent level;
*** Significant at 1 percent level.
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Table 9: Self-Reported Rationales for Over- and Underapplying Fertilizers Relative to Rec-
ommended Application

Urea DAP Potash
Reason for over/underapplication of fertilizers Freq. Percent Freq. Percent Freq. Percent
Why used more than recommended?

Fertilizer cost is low 5 2 0 0 0 0
Using less will reduce yields 46 30 27 52 7 50
Believe the usual amount is the right amount 101 66 25 48 7 50
Why used less than recommended?

Fertilizer cost is high 7 5 62 31 86 27
Does not have enough money 9 7 14 7 27 9
Yields would not increase by using more 8 6 4 2 10 3
Returns would not increase by using more 4 3 12 6 7 2
Using more would damage the crop 7 5 8 4 13 4
Believe usual amount is the right amount 76 58 92 46 152 48
Fertilizer is not available 9 7 1 1 10 3
Other 11 8 5 2 12 4

Source: Authors’ calculations. Farmers were asked how much fertilizer they used in comparison with the
recommendations (more than, less than, or recommended amount). Farmers who reported having applied
more or less of the recommended amount were then asked why they did so. DAP = diammonium phos-
phate.
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Table A1: Endline fertilizer application rates by whether farmers received recommenda-
tions above or below their planned fertilizer usage

(1) (2) (3)
Urea DAP MOP

Low rec. urea -84.9***
(15.5)

Low rec. DAP -41.7***
(11.3)

Low rec. MOP -87.1***
(11.2)

Village FE Yes Yes Yes

Observations 391 393 148
Adjusted R2 0.316 0.243 0.424
Mean dep. var 215.2 111.2 29.5

Notes: This table reports the the impacts of receiving a signal (recommendation) that is lower than planned
fertilizer usage in the rabi season on the di�erence between endline fertilizer application rates and planned
application rates prior to receiving the SHC (kg/ha). The sample includes only treatment farmers that
reported their planned input usage in the survey prior to receiving the soil health card. Column 1 reports
the results for urea, column 2 for DAP, and column 3 for MOP. All columns include a control for the planned
fertilizer usage, village fixed e�ects, and enumerator fixed e�ects. Standard errors adjusted for clustering at
the village level in parentheses. * Significant at 10 percent level; ** Significant at 5 percent level; *** Significant
at 1 percent level.
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Table A2: Impacts the SHC treatment on fertilizer application rates - Full sample

(1) (2) (3) (4) (5) (6) (7) (8)
Urea Urea DAP DAP MOP MOP MOP=1 MOP=1

SHC 23.5*** 16.2* 2.38 -1.82 2.12 0.34 0.067* 0.041
(7.11) (8.78) (5.43) (6.58) (1.53) (1.67) (0.040) (0.044)

Controls No Yes No Yes No Yes No Yes
Observations 735 735 735 735 735 735 735 735
Adjusted R2 0.135 0.138 0.115 0.112 0.438 0.438 0.501 0.500
Mean dep. var 181.3 181.3 105.5 105.5 16.1 16.1 0.40 0.40

Notes: This table includes the full experimental sample including households that planted crops other than
wheat in the 2014 rabi season (lentils, vegetables, etc.). Dependent variables in columns 1-6 are endline fer-
tilizer application rates (kg/ha). All columns report the estimates from a regression of the endline fertilizer
application rates on receipt of the soil health card treatment, block fixed e�ects, and enumerator fixed e�ects.
Standard errors adjusted for clustering at the village level in parentheses. * Significant at 10 percent level; **
Significant at 5 percent level; *** Significant at 1 percent level.
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Table A3: Impacts the SHC treatment on fertilizer application rates - Lee bounds

(1) (2) (3) (4)
Urea DAP MOP MOP=1

Lower bound 1.64 -9.80* -1.57 -0.010
(9.45) (5.12) (1.82) (0.040)

Ubber bound 18.5** 0.10 1.69 0.037
(8.67) (4.89) (2.01) (0.042)

Observations 864 864 864 864
Adjusted R2

Notes: All estimations includes block fixed e�ects. Standard errors in parentheses, clustered at the village
level.
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