
Confidence and Information Usage: Evidence from Soil Testing in

India∗

Ram Fishman † Jared Gars‡ Avinash Kishore § Yoav Rothler ¶

Patrick Ward‖

September 12, 2019

Abstract
The imbalanced use of chemical fertilizers in India is widely blamed for low yields, poor soil

health, and pollution of water resources. Simultaneously, fertilizer subsidies – especially urea – are
a source of large public expenditures. To address the issue, the government of India invested in
a large-scale program of targeted soil testing and customized fertilizer recommendations, with the
hope that scientific information will lead farmers to optimize their fertilizer mix. We conducted a
randomized controlled trial in the Indian state of Bihar in what we believe to be the first evaluation
of the effectiveness of the program as currently implemented. We find no evidence that soil testing
and targeted fertilizer recommendations had any effect on fertilizer use nor on farmers’ willingness
to pay for micronutrients. To rationalize these findings, we model and test the impacts of confidence
on farmers’ willingness to pay for and responsiveness to input recommendations and soil quality
measures. We find that farmers with less disperse priors (more confident) have a lower willingness
to pay for soil testing ex-ante and lower responsiveness of fertilizer usage to the recommended
application rates.
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1 Introduction

Fertilizer consumption in India increased remarkably during the second half of the 20th century and

into the first decade of the 21st century, rising from roughly 66,000 tons in the 1950-1951 agricultural

year to more than 26 million tons in 2009-2010 (Mujeri et al., 2012). This large increase in fertilizer

use was largely the result of a favorable policy regime in which fertilizers were heavily subsidized.

While cereal grain production increased significantly during the same time period, it failed to

keep pace with the dramatic increases in fertilizer application, resulting in low and deteriorating

fertilizer-use efficiency. Over time, and as a consequence of policy reforms, fertilizer application

rates have become increasingly imbalanced.1 To address these imbalances – and to reduce the large

fiscal burden associated with fertilizer subsides – the Government of India launched a massive INR

5.7 billion (USD 85 million) centrally-sponsored Soil Health Card (SHC) Scheme in February 2015

with the aim of providing all 140 million farmers in the country with soil health information and

fertilizer application recommendations on a triennial basis.2 The stated goal of the program is to

promote long-term soil health and increase cereals production through more scientific and modern

techniques.

Research on technology adoption frequently cites ignorance about proper management of tech-

nologies as a potential source of input misallocation. If this source of misallocation is substantial,

facilitating learning by relaxing information constraints may be pivotal in moving farmers closer

to a private optimum (Foster and Rosenzweig, 2010). However, evidence from information inter-

ventions has found mixed behavioral responses to information provision in a variety of domains

including agriculture (Cole and Fernando, 2016) and public health (Bennett et al., 2016; Dupas,

2011; Guiteras et al., 2016) as well as in investments in own and children’s education (Dizon-Ross,

2019; Wiswall and Zafar, 2015). While there is research on identifying how changes in the source

or type of information affect behavior, there is little evidence on the impacts of individual het-

erogeneity on responsiveness to information interventions.3 One potential explanation for the lack

1Since the early 1950s there has been an imbalance in the application of chemical fertilizers in Indian agriculture,
with urea being applied at a disproportionate rate relative to phosphatic and potassic fertilizers. The application
ratio varies from year to year, but the imbalance remains significant to this day. In 2012-13, the N:P:K application
ratio was 8:3:1, compared to the broad recommended ratio of 4:2:1 (Chanda et al., 2013).

2 Rather than collecting soil samples directly from every farmer’s field, the program collects soil samples on a 2.5
ha basis in irrigated areas and a 10 ha basis in rainfed areas.

3As an exception, Dizon-Ross (2019) finds that poorer parents have less accurate beliefs about their children’s
performance in school and respond more to correct information when making decisions to invest in books for their
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of response to information interventions is that individuals do not deem the information useful,

even if it is new to them. When farmers are confident in their ability, due to extensive experience

with inputs and well-formed beliefs about optimal input usage, an unanswered question is whether

targeted information is sufficient to change input use behavior.

In this paper, we provide some of the first empirical evidence on this matter and test the validity

of the assumptions underlying India’s flagship SHC scheme. The evidence comes from a randomized

controlled trial in the Indian state of Bihar that was introduced before – and thus approximated –

the government’s SHC intervention. Enumerators collected soil samples from treated farmers’ fields

that were sent to a certified laboratory for testing and analysis. Trained field staff provided farmers

with the SHCs, which included the soil test results as well as crop- and season-specific recommen-

dations for the required dosage of different fertilizers and micronutrients for a rice-wheat cropping

system, by far the most prevalent cropping system in Bihar. Although the recommendations of the

SHCs were markedly different from farmers’ baseline fertilizer applications, we find that the SHCs

had no effect on fertilizer application decisions.

To rationalize these findings, we designed an experiment to understand the role of confidence

on willingness to pay for and responsiveness to the soil quality measures and input recommen-

dations. To motivate our analysis, we extend the target-input model (Bardhan and Udry, 1999;

Jovanovic and Nyarko, 1996) and allow for the agent to purchase and use a signal conditional on

their contemporary beliefs, farming ability, and perceptions of the trustworthiness of the signal.

The initial strength of farmers’ beliefs regarding optimal input use (i.e., their confidence) is elicited

using simple visual aids similar to those frequently used in the field to elicit subjective beliefs (cf.

Delavande et al., 2011b).4 We use data on treatment farmers for whom we observe input behavior

before and after the receipt of the SHCs and explore the heterogeneous impacts of baseline beliefs

on demand for and responsiveness to the fertilizer recommendations.

Consistent with findings from the psychology and economics literature, we find that farmers

vary in their degree of confidence, and we provide evidence that the dispersion of elicited beliefs

measures are internally consistent with relative confidence measures and actual fertilizer application.

children.
4See Moore and Healy (2008) for further discussion of how confidence has been measured in both the psychology

and economics literature. Our measure is closest to the concept of “overprecision,” or the excessive certainty regarding
the accuracy of one’s beliefs.
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We find strong evidence that confidence in initial beliefs reduces the perceived value of information,

and that confidence is an important source of heterogeneity in responsiveness to information. Our

empirical results suggest that farmers with stronger, or less disperse, beliefs have a lower (stated)

willingness to pay for SHCs. The effect size implies that a one standard deviation reduction in

dispersion decreases willingness to pay by an average of USD 0.30, or 15 percent of the total price

of a SHC.

Furthermore, conditional on fertilizer use adjustment in the direction of the signal, confidence

and ability are associated with lower responsiveness to the recommendations provided on the SHCs.

A standard deviation decrease in belief dispersion is associated with a five percent decrease in

responsiveness, on average. We find that farmers that are literate or have a greater degree of trust

in agents from the national extension system are willing to pay more for the SHCs, but we do not

find evidence that trust has a significant effect on responsiveness to the recommendations. Thus,

low levels of literacy and the perceived credibility of the information are further threats to the

efficacy of these types of information interventions.

This paper contributes to two strands of the literature. First, it contributes to the growing

literature on the role of information as a constraint to technology adoption by smallholder farmers

in developing countries. Cole and Fernando (2018) find that the introduction of a toll-free hotline,

through which farmers can ask questions to agricultural experts, significantly increased adoption

of more effective pesticides and both cumin and cotton yields among farmers in Gujarat, India.

Hanna et al. (2014) show that despite having extensive experience, seaweed farmers in Indonesia

are unaware of the optimal size distribution of planted seaweed pods due to their failure to notice.

Providing farmers with their potential gains from changing the size and weight of pods led to changes

in their planting practices towards the information provided. More closely related to this paper,

recent evidence on providing soil tests to farmers has had more mixed results. Using plot level soil

tests in Tanzania, Harou et al. (2019) find that plot specific information and vouchers for fertilizer

purchase were insufficient to encourage adoption of chemical fertilizers by themselves. However, the

combination of both increased the application of fertilizers substantially, from a baseline average

of relatively little fertilizer usage. Cole and Sharma (2017) find that providing Indian farmers with

audio and video supplements that explain soil health cards performs considerably towards farmer

understanding and trust than in-person delivery. Heterogeneity in the strength of farmers’ beliefs
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about optimal input usage may help to explain the attenuated behavioral impact of providing

farmers with information, even if it is individualized.

Second, an expanding experimental literature has identified confidence as an important source

of heterogeneity in the demand for and usage of information. Existing research focuses primarily

on its causes rather than consequences, and is mostly confined to laboratory experiments using

binary decisions. Schotter (2003) finds subjects in the lab follow advice of others that only have

slightly more experience than themselves. Surprisingly, subjects in their experiment prefer to

receive the advice from others rather than get the information directly and make their own choice,

presumably due to under-confidence. Eliaz and Schotter (2010) find that agents are willing to

pay for information that supports their prior beliefs, or increases the confidence in their decisions,

despite the information not having any instrumental value. These experiments suggest there are

a number of possible motivations for information demand that are not necessarily linked to its

instrumental value but the players’ beliefs about their own or others’ judgement. With the exception

of Hoffman (2016), no studies of demand for information have moved beyond the lab to analyze the

impacts of confidence on actual decision making. Hoffman (2016) models and tests the impacts of

mis-calibrated self-confidence on demand and usage of direct and subjective signals using a framed

field experiment. Contrary to the previously cited research, he finds that experts systematically

underpay for information and that this effect is stronger among overconfident individuals. He also

documents significant overconfidence among his participants, in line with previous research using

incentivized experiments that measure ability and confidence.

This paper bridges the gap between the literature on information interventions and the role

of confidence on information demand. To our knowledge, the present study is the first attempt

to consider the role of confidence on demand for and use of information within the context of

technology adoption. Two recent papers consider other differences across farmers in the search for

and usage of advice. Barham et al. (2018) construct an experimental measure of responsiveness to

advice and find that it is positively correlated with a survey-based measure of confidence. They find

that cognitive ability predicts earlier adoption of GMOs, but that receptiveness to advice actually

slows adoption for farmers with high cognitive ability and speeds up adoption for those with low

cognitive ability. Their results highlight the importance of differences in receptiveness relative to

the ability of farmers in the decision to use available information.
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Finally, we make a theoretical and methodological contribution by operationalizing the disper-

sion of a farmer’s subjective probability estimates, interpreted as confidence, within a preexisting

model of learning about technology. The model used in this paper is an adaptation of the Bayesian

learning-by-doing model popularized by Jovanovic and Nyarko (1996), and adapted to the agricul-

tural context by Foster and Rosenzweig (1995). The model relies on the agent updating the mean

and variance of her beliefs over the true value of a parameter, in this case optimal fertilizer input

levels. The majority of previous research ignores heterogeneity along this dimension and assumes

common priors across farmers. Our method allows us to estimate these parameters directly from

farmers’ subjective beliefs distribution, elicited using visual aids. This method of belief elicitation,

summarized in Delavande et al. (2011b), requires respondents to allocate beans or stones across

bins to represent probabilities of events occurring. Similar measures have been used to elicit expec-

tations about future earnings and resulting education choices in Mexico (Attanasio and Kaufmann,

2009), expectations of rainfall among Kenyan pastoralists (Lybbert et al., 2007), and expectations

about contracting and death from HIV/AIDS in Malawi (Delavande and Kohler, 2009).

The remainder of this paper is organized as follows. In Section 2, we provide a model of

learning about optimal input usage to explore the role of confidence on information demand and

responsiveness and motivate our empirical analysis. In Section 3, we describe the soil testing

intervention and data collection and provide summary statistics. In Section 4, we show the impacts

of the intervention on fertilizer usage and we test the impacts of confidence on responsiveness to

the recommendations. In Section 5, we discuss alternative explanations for the lack of response to

the soil testing intervention. Finally, in Section 6, we conclude with a discussion of the implications

of our findings for the design of similar information interventions and how to improve the existing

soil health card scheme in India.

2 Model

In this section, we build a model of information demand and responsiveness that demonstrates

how farmers’ confidence in their input use explains a lack of adherence to the soil testing rec-

ommendations. The target-input model (Bardhan and Udry, 1999; Foster and Rosenzweig, 1995;

Jovanovic and Nyarko, 1996) is frequently used to explain learning about optimal management of
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a new technology (e.g., through experimentation, observing or learning from others, etc.) and its

implications for technology adoption. The model allows the agent to have a period-specific optimal

input choice by weighing her various sources of information, including own experimentation and

information from her peers (Foster and Rosenzweig, 2010). This process of updating and evalu-

ating the relative importance of own-experimentation and information from peers has frequently

been the basis for empirical work on social learning in developing countries (Bandiera and Rasul,

2006; BenYishay and Mobarak, 2018; Conley and Udry, 2010; Foster and Rosenzweig, 1995). In

the present application, we allow for decisions to be informed by an external information source

(a signal), which is potentially used by the agent (in this case, a farmer) to update beliefs about

optimal management strategies prior to taking an action. We will then demonstrate the conditions

under which this information would have any value for the agent.

We first present the general model and discuss how farmers update their beliefs in each period.

The farmer has knowledge of the production function and the relationship between inputs and

profits but does not know a random target parameter – in this case, the optimal level of fertilizer.

In the context of soil testing in Bihar, farmers have learned about this parameter over many periods

of individual and social experimentation, and thus, it seems reasonable to assume that they have

well-defined (prior) beliefs over the parameter. However, variation in shocks, soil quality, farming

ability, and confidence prevents all of the uncertainty from being resolved when farmers make

planting decisions in the current period.

The farmer’s output at time t is defined as qt, and is declining in the squared distance between

actual input use kt and the optimal input level θt:

qt = 1− (kt − θt)2 (1)

The target input level, θt, is the period-specific level of the input that would maximize total

production. The farmer does not know the target level at the time inputs are chosen. Rather, the

farmer chooses input level kt to maximize expected output. The optimal input level at time t is

θt = θ + ut (2)
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where ut ∼ N (0, σ2u) is an independent and identically distributed shock with known variance. The

θ term represents the objective mean optimal input level about which the farmer is learning over

time. The farmer does not know θ at time t but has subjective (prior) beliefs about the distribution

based on a history of input decisions and realized yields: θ ∼ N (θ∗t , σ
2
θt

). At time t, the farmer’s

perception of the reliability of her estimate – that is, her confidence – is a function of the variance

of this prior distribution, σ2θt . For narrow prior distributions (i.e., with a small variance) the farmer

is confident in her beliefs about the optimal input level, while for wide prior distributions (i.e., with

a large variance), the farmer is less confident. In our framework, farmer’s confidence in subjective

beliefs at period t is represented by ρθt = 1
σ2
θt

.

The period-specific target input level (θt) varies with independent and identically distributed

shocks, ut.
5 The optimal annual input use will be a function of growing conditions (including,

among other things, the nutrient levels present in the soil) and the ability of the farmers to adjust

other inputs to suit growing conditions. To reflect this, we assume that the variance of the optimal

input level (σ2u) varies across farmers and depends on farmers’ ability. Farmer-specific ability is

denoted as ρu = 1
σ2
u

, where better (higher ability) farmers have a lower variance of shocks to optimal

input usage. Ability reflects management capacity, including effective coordination of inputs such

as fertilizers, pesticides, labor, irrigation, etc. That is, conditional on aggregate shocks like weather

variability and disease pressure, better farmers have a lower variance of transitory shocks to optimal

input use.6

To simplify the exposition, we normalize output prices to one and assume that the input is

costless. Farmers apply the expected optimal target as the input level, so that kt = Et(θt) = θ∗t .

Expected output (profit) can be expressed as

Et(qt) = 1− Et[kt − θt]2 = 1− Et[θ∗t − θ − ut]2 = 1− σ2θt − σ
2
u (3)

From this result it is clear that subjective expected output is decreasing in σ2θt and σ2u, and therefore

5The period-specific shock can be decomposed into village-level (covariate) and individual-level (idiosyncratic)
components with respective variances σv and σi. We assume the shocks are additive and independent and exclude
the common component to simplify the analysis.

6BenYishay and Mobarak (2018) also interpret 1/σ2
u as a measure of innate farming ability in a model where

farmers are considering the purchase of a signal about new technology. Unlike in the present study, their model
assumes farmers do not have previous experience with the technology, and consequently the distribution of priors is
not considered in the decision to purchase the signal.
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increasing in the level of confidence over the target input level (ρθt) as well as in the farmer’s ability

(ρu). The farmer makes input choices to maximize expected profit, conditional on the precision of

her subjective beliefs about the target parameter. After applying input level θ∗t and observing the

realized out qt, the farmer uses equation (1) to deduce the period specific optimal input, θt, and

updates her beliefs about θ using Bayes’ rule:

θ∗t+1 = θt

(
ρu

ρu + ρθt

)
+ θ∗t

(
ρθt

ρu + ρθt

)
(4)

The farmer’s updated expectation of the optimal input is a linear combination of her previous

expected optimal value (θ∗t ) and the revealed optimum after harvest (θt). Specifically, the weight

on the prior expectation is proportional to the farmer’s confidence in her prior beliefs, while the

weight on the revealed target is proportional to the farmer’s ability. Farmers with better ability

(larger ρu) place more weight on the revealed optimum (θt), and their beliefs move closer to the true

value of θ, holding confidence fixed. Conversely, other things equal, farmers with higher confidence

in their own subjective beliefs will place more weight on prior beliefs, and thus their posterior beliefs

will more closely resemble their prior beliefs. In the extreme, if a farmer were to have absolute

confidence in her prior subjective beliefs, then the posterior beliefs will perfectly replicate prior

beliefs, such that the farmer learns nothing from additional information.

Similarly, posterior beliefs about the variance of the target parameter are updated according to

σ2θt+1
=

1

ρθt + ρu
(5)

A farmer’s confidence at time t + 1 is determined by her prior level of confidence and her ability.

Notice however, that through combining information from the prior subjective beliefs and the

revealed information, the farmer’s posterior beliefs are more precise than if she were to only rely

on one source of information.

2.1 Demand for Information

In this section we extend the model to analyze the farmer’s decision to purchase a signal. Consider

a farmer in time t = 1 with beliefs N (θ∗1, σ
2
θ1

) and ability ρu. The farmer’s beliefs at time t = 1
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are updated using the output from the initial planting season (t = 0), when her planting decision

is made using only initial confidence (ρθ0) and ability (ρu). Initial confidence and ability are

assumed to be randomly chosen from some arbitrary distribution and are independent, conditional

on demographics, wealth, and cognitive ability.

In period 1, prior to planting, the farmer is given a choice to purchase a signal, S. Without

seeing the information, the farmer has prior beliefs about the distribution of the signal, σ2S . We

interpret this variance as the perceived degree of signal reliability, or similarly the degree of trust

that the farmer has in the source of information. If she purchases the signal, S is revealed and the

farmer updates her beliefs to N (θ̃1, σ̃
2
θ1

) according to

θ̃1 = θ∗1

(
ρθ1

ρS + ρθ1

)
+ S

(
ρS

ρS + ρθ1

)
(6)

and uses θ̃1. If she does not purchase the signal, she plants using θ∗1 to maximize expected profit.

When considering the decision to purchase the signal, the farmer applies Bayes’s rule to update

her beliefs about the variance of θ conditional on her belief of the signal’s precision or reliability.

Given these beliefs, the variance after purchasing the signal is calculated according to

σ̃2θ1 =
1

ρθ1 + ρS
(7)

where ρS = 1
σ2
S

is the subjective precision of the signal. As before, the updated beliefs are a

weighted function of the farmer’s prior beliefs and the received signal, with the weight on prior

beliefs proportional to the degree of confidence in these beliefs and the weight on the received

signal proportional to the perceived precision of the signal. Note again, if confidence in the prior

beliefs is high, then these updated beliefs will closely resemble the prior beliefs, other things equal.

We assume that beliefs about the precision of the signal do not change after the signal is revealed

and that farmers are myopic in their choice to purchase the signal (i.e. only the expected yields of the

following season are included in the expected benefits). Substituting equation (7) into the expected

profit equation (3, the farmer will purchase information if and only if E(π|S = 1)−E(π|S = 0) > 0.

Farmers’ willingness to pay (WTP) for the signal is the difference between expected profit with

9



and without the signal:

WTP ≡ E(q̃1)− E(q1) = (1− σ̃2θ1 − σ
2
u)− (1− σ2θ1 − σ

2
u) = σ2θ1 − σ̃

2
θ1 (8)

Substituting equation (7) for the second term of this difference gives

WTP ≡ σ2θ1 −
1

1
σ2
θ1

+ 1
σ2
S

(9)

So long as the distribution of the signal has a finite variance, this difference is always greater

than zero, so farmers should be willing to pay some positive price for information, regardless of its

perceived precision.

Proposition 1: Demand for information is decreasing in farmer confidence

Conditional on ability, ρu, WTP is a decreasing function of initial farmer confidence, ρθ0 and is

therefore decreasing in confidence at time t = 1.

Combining the result from equation 8 with equation 5 yields

σ2θ1 − σ̃
2
θ1 =

1

ρθ0 + ρu
− 1

ρθ0 + ρu + ρS
≡WTP (10)

Taking the first derivative with respect to ρθ0 gives

∂WTP

∂ρθ0
=

1

(ρθ0 + ρu + ρs)2
− 1

(ρθ0 + ρu)2
< 0 (11)

For any two farmers with the same ability, the farmer with higher confidence at t = 1 will demand

less information. We note that ∂WTP/∂ρu = ∂WTP/∂ρθ0 . This results from only having two

periods, so both ability and initial confidence are equally weighted in the calculation of ρθ1 . In

reality, the weight on ρu in the calculation of ρθt will be scaled by the number of periods that the

farmer has planted, and this equality will only hold in the first period.

Proposition 2: Demand for information is decreasing in farmer ability

Conditional on an initial level of confidence, ρθ0, WTP is a decreasing function of farmer ability, ρu.
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Taking the first derivative of (10) with respect to ρu gives:

∂WTP

∂ρu
=

1

(ρθ0 + ρu + ρs)2
− 1

(ρθ0 + ρu)2
< 0 (12)

Conditional on the initial level of confidence, demand for information is decreasing in farmer ability

(ρu).

2.2 Responsiveness to Information

We now consider a farmer that is given a signal for free. Upon receiving the signal S, and assuming

that a farmer’s beliefs about the precision of the signal remain constant, σ2S , optimal input usage

is updated according to Bayes’ rule as given in equation 6:

θ̃1 = θ∗1

(
ρθ1

ρS + ρθ1

)
+ S

(
ρS

ρS + ρθ1

)
(13)

Proposition 3: Information responsiveness is decreasing in farmer confidence For any

signal S, the difference between actual input use after receiving information and planned input use

prior to receiving information is decreasing in farmer confidence.

We define the degree of information responsiveness after receiving the signal (α) as

α =
θ̃1 − θ∗1
S − θ∗1

(14)

where responsiveness captures the degree to which the posterior of the optimal input value moves

towards the signal as the fraction of the distance between the prior and the signal. For θ∗1 > θ̃1 > S,

α increases from zero to one as the posterior approaches the signal (i.e., the farmer responds more

to the information).7

From equation 6, we can rewrite the numerator of equation (14) as:

θ̃1 − θ∗1 = S

(
ρS

ρS + ρθ1

)
+ θ∗1

(
ρθ1

ρS + ρθ1

)
− θ∗1. (15)

7We provide further explanation and justification for this measure of responsiveness in Section 3.5.
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Taking the derivative of this expression with respect to confidence at time t = 1 yields:

∂

∂ρθ1
[θ̃1 − θ∗1] =

ρS(θ∗1 − S)

(ρS + ρθ1)2
(16)

If the planned input amount is larger than the recommendation, such that θ∗1 > S and ∂[θ̃1 −

θ∗1]/∂ρθ1 > 0, the denominator of equation (14) is negative and fixed at time t=1, hence

∂α

∂ρθ1
< 0 (17)

In other words, the degree of advice utilization is decreasing in farmer confidence. The same result

holds when farmers are applying less than the recommended amount, or θ∗1 < S.

Proposition 4: Information responsiveness is decreasing in farmer ability For any signal

S, the difference between actual input use after receiving information and planned input use prior

to receiving information is decreasing in farmer ability for a given initial level of confidence.

As above, taking the derivative of the numerator of equation (14) with respect to ability at time

t = 1 yields

∂

∂ρu
[θ̃1 − θ∗1] =

ρS(θ∗1 − S)

(ρS + ρθ0 + ρu)2
(18)

The weight placed on the signal is decreasing in the farmer’s ability, so that

∂[θ̃1 − θ∗1]

∂ρu
< 0 (19)

Advice utilization decreases in ability. If the planned input amount is larger than the recommen-

dation such that θ∗1 > S and ∂[θ̃1 − θ∗1]/∂ρu > 0, the denominator of equation (14) is negative and

fixed at time t = 1, hence

∂α

∂ρu
< 0 (20)

In other words, the degree of advice utilization is decreasing in farmer ability. The same result

holds when farmers are applying less than the recommended amount, or θ∗1 < S.
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3 Experimental Design and Data

3.1 Study Area and Randomization

The study was conducted in partnership with the Department of Soil Science of Rajendra Agricul-

tural University (RAU) in Samastipur district, Bihar, the oldest and most prestigious institution

for agricultural research and extension in the state. We used a multistage sampling approach to

form our survey sample. In the first stage, we selected three districts with a predominant rice-wheat

cropping system from which to sample households: Bhojpur, Madhubani, and Nawada (Figure 1).

These three districts span two distinct agroecological zones and have varying levels of agrarian dy-

namism. In the second stage, we selected 16 high-rice-producing blocks (subdistrict administrative

units) across the three districts, with the number of blocks drawn from each district proportional to

the share of rice production attributable to that district: seven blocks were selected from Bhojpur,

6 from Madhubani, and 3 from Nawada.8 Within each of these 16 blocks, we randomly selected 2

villages from which to draw households for treatment and 1 village from which to draw households

for a control group. From each of these 48 villages, we randomly selected 18 rice- and wheat-growing

households from village rosters prepared by enumerators through door-to-door listing. After elimi-

nating households for which the soil samples were not collected, our treatment group consists of 490

households (89 percent of sampled households) and the control group consists of 284 households

(98 percent of sampled households).9

3.2 SHC Intervention and Data Collection

Despite India’s history of soil testing, the state of Bihar has lagged behind other states such as

Gujarat in its soil testing program. Among treatment farmers, only 2 percent reported ever having

their soil tested, but 95 percent indicated that they would like to have their soil tested. This

suggests a potentially high demand for the service that is not currently being met. Of the farmers

8We had originally planned to carry out the intervention during the monsoon rice-growing season (kharif ). Due
to logistical challenges with the pace of soil analysis in the RAU laboratory, we were forced to delay distribution of
SHCs until just prior to the wheat-growing season (rabi). Limited soil testing capacity remains a major challenge for
the successful implementation of the soil testing program all over India, and delays are common. Fortunately, almost
all farmers in our study area also grow wheat on more than 90 percent of their gross cultivated area during the rabi
season.

9Eleven percent of households either refused to have their soil tested, did not want to participate in the SHC
delivery when enumerators returned with the results, or could not be located during the follow-up.
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that expressed the desire to have their soil tested, over half wanted information about how much

urea and other fertilizers to use as well as the timing of fertilizer application. Others were concerned

only with how much urea to use (17 percent), which other fertilizers to use (26 percent) or when to

apply fertilizers (5 percent). Farmers that did not want their soil tested reported that there would

be no benefit as the primary reason (37 percent), while others cited a lack of trust in the results (9

percent), that they already know soil health (9 percent), or had some other reason (45 percent).

Figure 2 illustrates the timeline of the SHC intervention and related data collection activities

undertaken during the study. We conducted a baseline survey in April-May 2014 prior to collecting

soil samples. The baseline survey covered both treatment and control households and collected

information on farmer characteristics (such as age, gender, education, caste membership, total

landownership), use of inputs (including quantities of applications for different types of fertilizers),

and yields for crops harvested during 2012-2013. In order to analyze the underlying reasons for

farmers’ fertilizer choices and responses to the SHCs, we collected additional data throughout the

experiment. During the baseline survey, we administered experiments to treatment and control

farmers to elicit risk preferences, self-reported confidence, and subjective beliefs regarding optimal

urea and diammonium phosphate (DAP) use on the upcoming rice crop for kharif 2014.10 These

latter experiments are explained in greater detail in Section 3.2.1 below.

In May-June 2014, following the baseline survey, we collected soil samples from one plot of

every treatment farmer. The plot from which samples were collected was randomly selected from

a list of farmers’ self-identified two most important plots. Eight graduates from local agricultural

universities with farming experience were selected to serve as extension agents for this study. These

agents received a three-day training from experts at RAU and the regional office of the Indian

Council of Agricultural Research on the proper procedures for collecting soil samples for subsequent

testing. These agents then visited each of the treatment households, collected soil samples according

to the recommended practices, and deposited them with the soil testing laboratory at RAU. This

execution of soil testing and its delivery to the laboratory was meant to approximate the intended

execution of the central government’s SHC program, albeit at an individual household level rather

than on a gridded basis (see footnote 2).

10See Ward and Singh (2015) for further discussion on the risk elicitation experiment and estimation of risk
preferences using a method similar to Tanaka et al. (2010).

14



The soil samples were sent to RAU for chemical analysis. Using wet chemistry methods, the soil

scientists at RAU tested for the levels of key macronutrients (nitrogen, phosphorus, and potash)

available in the soil, as well as organic carbon content, electrical conductivity, soil pH value (i.e.,

whether the soil is alkaline, acidic, or neutral), and the levels of some important secondary- and

micronutrients (sulfur, zinc, iron, copper, and manganese). Based on these analyses, and using

simple yield response equations (see section 3.4), the scientists at RAU generated plot-specific SHCs

reporting soil nutrient composition (i.e., the levels of various nutrients and comparison relative to

some threshold level) and crop-wise fertilizer recommendations for the 2014 kharif and 2014-15 rabi

seasons. Recommendations were calibrated for a designated target yield of 40 quintals per hectare

for wheat.11

The SHCs (printed in Hindi) were hand-delivered to individual farmers in November 2014 (prior

to planting the rabi wheat crop) by the aforementioned extension agents trained on the proper

interpretation and explanation of SHC results and recommendations. The front side of the SHC

contained information on soil nutrients and their measured levels, categorized as low (deficient),

medium (within the acceptable range), or high (excessive), while the back side of the SHC provided

farmers with information on the recommended quantities of different fertilizers to apply to their

various crops. An example of the soil health card (translated into English) is presented in Figure

3.

An additional survey was carried out following the distribution of the SHCs (December 2014-

January 2015) to collect information on cultivation habits, fertilizer application, and wheat yields

from the previous rabi season (2013-2014). A follow-up survey was conducted after the rabi 2014-

15 wheat harvest (June-July 2015) to collect information on farmers’ fertilizer application and

production. An additional interaction was conducted to elicit farmers’ WTP for zinc (June-July

2015), following the follow-up survey. A simplified Becker-DeGroot-Marschak mechanism was im-

plemented, allowing us to compare zinc valuation by farmers whose land is zinc deficient with zinc

valuation by those whose land is zinc sufficient (both in the treatment group), as well as zinc valu-

ation by those whose specific land characteristics are undetermined (that is, farmers in the control

group).

11A quintal is equivalent to 100 kg.
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3.2.1 Measurement of Subjective Belief Distributions

To elicit subjective beliefs about optimal fertilizer application rates, we employed a hypothetical,

visually-aided elicitation method. Specifically, farmers were asked to allocate beans across bins

according to how likely they think that each fertilizer application rate bin would lead to the highest

yields on their primary agricultural plot. Delavande et al. (2011a) argue that answers to hypo-

thetical beliefs elicitation experiments such as this are reasonable, and therefore do not require

incentives. While recent experimental evidence finds some evidence for hypothetical bias due to

risk aversion using non-incentivized beliefs-elicitation methods (Harrison, 2016), our elicitation pro-

cedure is constrained by the non-verifiability of the true value of the random variable, and therefore

we are unable to elicit beliefs with incentives. Nevertheless, we present results controlling for risk

aversion and discuss the implications of hypothetical bias in our results.12

Whereas much of the early work using similar visually-aided experiments to elicit subjective

beliefs avoided explicit references to probability or likelihood (e.g., due to idiosyncratic differences

in the interpretation these terms), we followed the example of Delavande and Kohler (2009) and

explicitly framed our experiment in probabilistic terms. In order to minimize the risk of confusion

or idiosyncratic differences in interpretation, we attempted to ensure that all respondents began

the experiment with a comparable baseline understanding of probability. Prior to initiating the

experiment, enumerators gave farmers a brief introduction to the fundamentals of probability to

help them conceptualize the subsequent experiment. Farmers then evaluated a series of five practice

questions that tested their comprehension of subjective probabilities and their ability to allocate

20 beans to represent these probabilities.

After participants were comfortable representing probabilities with the beans, they were asked

to allocate 20 beans to represent their subjective beliefs regarding the optimal urea and DAP

application rates (in kg per katha) for the upcoming kharif season on their primary rice-growing

plot.13 The bins of fertilizer application rates were predetermined based on conversations with

farmers and extension agents in the region. The DAP support consists of 5 bins spread over the

empirical distribution of DAP while the urea support consists of 7 bins spread over the empirical

12Harrison (2016) argues that, for empirically plausible levels of risk aversion, the most important features of the
latent subjective beliefs distribution can be elicited without needed calibration for risk attitudes.

13A katha is a unit of land commonly used throughout South Asia, with 1 acre approximately equivalent to 32
katha.
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distribution of urea application rates. Both supports have wide tails, and the bins are not of equal

size. We chose varying bin sizes in order to cover the whole empirical support of fertilizer usage

while allowing for variation where the majority of application occurs.14

Eliciting the beliefs distributions entailed two questions for each bin. Before starting, respon-

dents were reassured that there were no incorrect answers and that we were only interested in their

thoughts regarding optimal fertilizer use. For each bin, respondents were asked:

Do you think that this range of total urea (or DAP) applied throughout the season

could result in the maximum possible yield in the upcoming season on your primary

rice-growing plot? If yes, what is the likelihood that this range of application rates will

result in the maximum possible yield in the upcoming season?

After repeating these questions for each bin, respondents were allowed to reconsider their choices

and re-allocate beans accordingly, using the entire support and all beans.

Figures 6 and 6 give the range of values available for urea and DAP, respectively, and the

proportion of total beans (or total probability) allocated to each bin. The figures show that at

least some farmers consider the whole support to be plausible for both fertilizers and they are

relatively uniform, though slightly right-skewed. The skewness may be attributed to local beliefs

over the amount of urea that results in crop failure. There is no apparent bunching at particular

values of the distribution, and most bins have over 20 percent of respondents believing that there

is at least some possibility that the corresponding range of fertilizer application will result in the

highest yields.

From the sequence of responses, we estimate the first and second moments for each individuals’

subjective beliefs assuming a stepwise uniform distribution (Attanasio and Augsburg, 2016). The

expectation and variance of the elicited beliefs are used as proxies for the corresponding expectation

and variance of the farmers’ true beliefs distribution prior to receiving soil testing (θ1, σ
2
θ1

). Table

1 reports the summary statistics for the moments of the subjective beliefs distributions for urea

and DAP.

14Delavande et al. (2011a) conduct experiments to test the sensitivity of subjective distributions to a variety of
elicitation methods and find that results are generally robust across bin count, predetermined versus self-anchored
support, and the number of beans to be allocated. However, accuracy increases by including more bins and beans
without a marked increase in the cognitive burden on respondents.
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3.3 Self-Reported Confidence and Trust

In addition to subjective beliefs, we asked questions that provide self-reported measures of relative

confidence as well as a question that captures farmer’s trust in agricultural extension agents. The

first question asks:

How often do you have doubts about agricultural practices?

Farmers respond on a Likert scale corresponding to judgments from “much less than others” to

“much more than others.” From this scale we construct a measure of whether farmers have the

same or more doubts relative to their peers, which we use as a proxy for a farmer’s confidence in

their farming abilities.

To have a measure of farmer trust in agricultural extension agents, we asked a binary measure

of respondent trust in the information provided by agricultural extension agents. Trust in extension

agents is a proxy for beliefs about the efficacy of agricultural extension services and the information

provided. Lower trust should therefore provide information on farmers’ perception of the reliability

of signals from extension agents. Referring back to equation 7, we treat farmers’ relative confidence

as a measure of the precision of their prior beliefs (ρθ1) and their trust response as a binary measure

of the subjective precision of the signal (ρS).

While we elicited subjective beliefs over optimal fertilizer rates for the rice crop for kharif 2014,

logistical constraints delayed the preparation of SHCs until after the sowing for the kharif 2014 sea-

son. Due to the timing of the experiment discussed in the previous section, we use these subjective

beliefs in the analysis of fertilizer usage during the winter rabi (wheat) season of 2014/2015. Em-

pirical overconfidence experiments find within-agent confidence correlations between 0.50 and 0.60

across tasks (Klayman et al., 1999). Given the similarity in experimental tasks in the present study,

we believe confidence in beliefs for fertilizer application during the kharif season is a reasonable,

though imperfect, proxy for confidence in beliefs for fertilizer application in the rabi season. Ta-

ble 2 provides evidence that dispersion in beliefs for both urea and DAP are positively correlated

(Pearson correlation coefficient of 0.38), suggesting that confidence is correlated across different

fertilizers for the same crop. The dispersion measures are also correlated with survey measures of

relative confidence described above, suggesting that our dispersion measures are capturing mean-
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ingful heterogeneity in respondents that may also be applicable across crops15

Additionally, from the baseline survey, over 92 percent of farmers planned to use urea in kharif

2014, while only 75 percent planned to use DAP. Lower rates of DAP usage may be indicative of

a lack of experience with the fertilizer on rice crops. Farmers have more experience with urea and

DAP in the rabi wheat season, with only 1 percent of farmers in the sample not applying both

fertilizers.

3.4 Ability

In the theoretical model developed in section 2, ability reflects farmers’ managerial capabilities and

their capacity to limit the impacts of shocks. As a result, ability results in faster convergence of

beliefs to the optimum and, consequently, higher yields. Based on this reasoning, we construct a

measure of ability using the simple, linear yield response equation used by the soil scientists at

RAU as the basis for the soil recommendations. The equation relates the target yield and available

levels of nitrogen in the soil to calculate a recommendation for urea application at the plot-level.

These equations are customized to each district based on some underlying basic soil characteristics.

The recommended urea application (in quintals per hectare) :

SU,i = (Y ∗ × 4.06−Ni × 0.23)/46.08

where SU,i is the recommended level (or signal) for urea (U) specific to farmer i, Y ∗ is the target

yield (in quintals per hectare), and Ni is the nitrogen available in the soil. From this equation, we

calculate the yield that the farmer should have obtained in rabi 2013 by replacing SU,i with the

actual level of urea applied and solving for Y ∗i . This “target”, Y ∗i , therefore, would then be the yield

that farmer i should have obtained, assuming the specified yield response parameters. Using this

value, we calculate the difference between realized wheat yields during rabi 2013 (Y13,i) and Y ∗13,i.

Farmers are categorized as “high” ability if their difference falls within the bottom quartile of the

distribution of Y ∗13−Y13, and are categorized as “low” ability if their difference in the top quartile of

the distribution of Y ∗13−Y13. The middle fifty percent of farmers are classified as “medium” ability.

The resulting categories provide a measure of ability across farmers that allows us to control for

15Note that we do not utilize subjective assessments of the location of these beliefs distributions (e.g., the means),
but rely on assessments of the shape of the distributions (e.g., the variance).
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relative differences in innate farming ability and test the comparative statics from the model on

the relationship between ability and responsiveness to the SHCs.

3.5 Responsiveness to Information

Information responsiveness (α), described in Section 2.2, is proxied by a measure of advice taking

commonly used in the Judgment-Advisor System (JAS) literature.16 In this literature, advice

utilization of a “judge”, α = E−B
S−B ∈ (−∞,∞), is the ratio of two differences: that between

the endline (E) and baseline (B) estimates, and that between the recommendation (S) and the

baseline estimate. In our context, we take the fertilizer application rates during rabi 2013-14 to

represent baseline estimates in the calculation of responsiveness and fertilizer application rates

during rabi 2014-15 to represent the endline estimates after having received the plot-level fertilizer

recommendations (S) in the form of SHCs.17

This measure of advice utilization is appealing because it provides a simple way of capturing

the degree to which the signal recipient moved from her initial estimate to her final estimate as a

function of the recommendation, but it has a number of drawbacks. First, the formula is undefined

when the baseline estimate equals the recommendation. None of the sample households applied

urea or DAP at the same rate as the recommendation, so this does not affect our sample. Second,

in the event that the signal recipient moves in the opposite direction from the recommendation,

the advice utilization measure becomes negative, and the interpretation of magnitude of these

values becomes ambiguous. Similarly, if the judge overshoots the recommendation, the measure

is strictly larger than one. These undefined or “out of range” values are generally dropped in

the JAS literature. However, the majority of JAS studies are confined to lab experiments where

the proportion of problematic observations is less than 5 percent. The nature of farming in rural

India implies that the proportion of “out of range” values in our sample is large relative to the

literature (above 50 percent for urea and 30 percent for DAP). Moving in the opposite direction

or overshooting the advice may be due to a variety of reasons including season specific constraints

(credit, labor, etc), biased learning, or shocks (e.g. pests, health). In the analysis that follows,

16See Bonaccio and Dalal (2006) for an overview of this literature and a detailed description of various measures
of advice utilization.

17Ideally, we would have preferred to use the experimentally-elicited priors as our baseline measure, but since the
priors were elicited with respect to the kharif rice crop and we measure responsiveness following signals provided for
the rabi wheat crop, we were unable to do so.
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we exclude these problematic observations for two reasons. One, we do not have an otherwise

defensible strategy to sufficiently explain why farmers move in the opposite direction or overshoot

in responses to advice due to data limitations. Second, our model makes predictions about marginal

changes in responsiveness in the direction (i.e., the adjustment from prior to posterior is an increase

or decrease consistent with the recommendation, though of a different magnitude) of the advice.

3.6 Summary Statistics

Table 3 presents summary statistics from the baseline survey and examines the balance between

the treatment and control groups. In our sample, 90 percent of the respondents were male, and

their average age was 46 years. Nearly 40 percent of respondents were illiterate. The summary

statistics reported in Table 3 show that the randomization process resulted in a balanced sample

in terms of farmer characteristics, productivity, beliefs, and fertilizer application.

Summary statistics for the dependent and explanatory variables used to test the impacts of

confidence on demand for and responsiveness to information are reported in Table 4. Of the 470

treated households, 30 households are excluded from the analysis because of missing values for

baseline urea application rates and 72 households are excluded because they did not plant wheat

in either the rabi 2013 or rabi 2014 season. Consequently, we only report summary statistics for

the remaining 369 households. From this sample, 87 percent of household heads are male and 62

percent are able to read and/or write. Household sizes are quite large, with over 8 members per

household on average. Notably, the percentage of farmers with less than 10 years of experience with

planting wheat is less than 20 percent; that is, a large majority of households have had substantial

farming experience with which to form beliefs about optimal input management. The average size

of tested plots was 0.19 hectares (0.47 acres). Only a quarter of households own an irrigation pump.

Those without an irrigation pump rely on renting one (73 percent) or water from a nearby canal

(2 percent). Credit access is low in Bihar, as shown in our sample. Nine percent of farmers applied

for or had access to credit during the rabi 2013 season. In terms of confidence and trust, only

4.5 percent of farmers have a little more doubts than others and 38 percent said they have the

same amount, suggesting that confidence in farming techniques is pertinent for rural Bihar. Sixty

nine percent of farmers responded that they would not trust extension agents until there is clear

evidence that the information is effective.
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3.7 Soil Test Results and Recommendations

The recommended doses of different fertilizers are partly determined on the basis of available

concentrations of different nutrients as found in the chemical analysis of soil samples, but are also

conditioned by a target yield that is specific to a particular crop. One way to think about the

recommendations is that they provide advice on the application of nutrients required to achieve

a target yield, once the availability of nutrients in the soil is taken into consideration. The basic

recommended dose was based on a target wheat yield of 4 metric tons per hectare. With this

target yield, the recommended dose of urea varied from 232 to 297 kg per hectare while baseline

application rates varied widely (mean of 210 kg, standard deviation of 86 kg). For phosphate

(DAP), the recommended application varied from 100 to 240 kg per hectare, and for potash, from

34 to 122 kg per hectare. In our sample, 137 farmers received a recommendation to apply 20 kg

per hectare of sulfur, and 180 farmers received a recommendation to apply zinc at the rate of 25

kg per hectare. Once applied, zinc remains available to crops for up to three cropping seasons,

though marginal returns on the application of zinc are higher if it is first applied to the rice crop

in a rice-wheat cropping system.

While the recommendations provided by RAU assumed a target yield of 4 metric tons per

hectare, in reality, farmers’ “target” yields vary because of budgetary considerations and other

factors constraining productivity. The average yield at baseline was 25 percent lower than the

target yield used as the basis for recommendations (3.03 metric tons per hectare). We therefore

also calculate recommendations that were re-calibrated on the basis of farmers’ self-reported wheat

yields. These recommendations were not provided to farmers, but provide information on the inputs

farmers could use to obtain yields similar to what they might reasonably establish as a target given

their soil characteristics.

Table 5 compares the recommendations with data on actual fertilizer use from the baseline

survey. Calibrated results show that more than 80 percent of farmers in our sample apply more

than the recommended dose of urea for their level of yields. We also find that overapplication

of DAP is common, with more than 75 percent of farmers applying more than the recommended

dose. During the 2013-2014 rabi season, urea and DAP application was higher than the calibrated

recommendations by 72 and 36 percent, respectively. Farmers generally applied less potash than the
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recommended dose, with average applications 69 percent less than the calibrated recommendations.

While RAU scientists recommended that most farmers in our sample apply potash to their wheat

crop at an average rate of 43 kg/ha, only 143 treatment farmers applied potash to wheat.

It is widely argued that the high subsidy on urea could be one of the reasons for its excessive

use. We note, however, that although DAP is not as heavily subsidized as it once was (and as

urea presently is), a significant number of farmers were found to have applied excessive amounts

of DAP. In fact, DAP is not only costly, but when applied in excess, it gets fixed into the soil and

is not available to plants. The application of secondary nutrients and micronutrients was found to

be very rare among sample farmers. For example, one in four soil samples were found deficient in

zinc and sulfur, but few farmers had applied zinc or sulfur in the previous season.

In Figures 6 and 6, we compare the densities between fertilizer usage in rabi 2013 and rec-

ommended fertilizer application rates for rabi 2014 for treatment farmers (using 4 metric tons

per hectare as target). Urea usage during rabi 2013-14 was more widely dispersed than the rec-

ommended values, as over 25 percent of farmers have baseline application rates below the tenth

percentile of the recommended value. Additionally, the spread of the recommended urea density

demonstrates substantial heterogeneity in nitrogen levels in soil across households in the region.

Similarly, DAP application rates are more disperse than the recommendations, though baseline

DAP application rates are higher than the recommendations.

The difference between the baseline fertilizer application rates and the recommendations are

presented in Figures 6 and 7. The figures suggest that a large proportion of treatment farmers

(42 percent) apply urea at a rate within 50 kg per hectare of the recommended rate, but many

treatment farmers are far from the optimal value, and may stand to benefit from revising their

fertilizer application behavior. The divergence between the target and actual behavior may be

due to a variety of factors including season specific constraints, lower yield targets, and a lack of

knowledge about optimal management of inputs. Data on treatment farmers’ farm management

across the kharif rice seasons (e.g., 2013-2015) suggests that application rates stay relatively stable

over time.
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4 Empirical Strategy

In this section, we first test whether the SHCs affected fertilizer use and, in particular, whether

there are heterogeneous responses based on farmer confidence. Second, we test the predictions of

the model introduced in Section 2; specifically, whether confidence in one’s prior subjective beliefs

affects responsiveness to the information intervention.

4.1 Did the SHCs Influence Farmers’ Fertilizer Use?

The randomized design of the intervention allows us to estimate the causal impacts of the delivery

of SHCs through a comparison of mean fertilizer use between the treatment and control groups.

Because we had control over who received the SHC, there are no concerns about sample selection,

nor do we have reason to believe that any farmers from control villages would have inadvertently

received information on soil health or fertilizer recommendations from treated farmers. We estimate

the impacts of the receipt of the soil health card on the sample of farmers that planted wheat in both

the baseline and endline.18 Our outcome variable of interest is the log of the respective fertilizer

use at endline. We use the following estimating equation to study effects on fertilizer use:

Fivbe = β0 + β1Tiv +X
′
iγ + µb + νe + εivbe (21)

where F is the log of fertilizer application rates measured in kg per hectare by farmer i from a

village in block b, Tiv is a treatment indicator. We include block (strata) fixed effects µb and

enumerator fixed effects νe. The latter effects are included because farmers may have felt obligated

to adhere to the SHC recommendation, and self-reported fertilizer use could have been sensitive

to the identity of the enumerator, who also distributed the SHC. In some specification, we include

Xi a vector of individual and household characteristics including gender, age, literacy, landholding

size, size of the treated plot, and baseline fertilizer usage to increase precision.19Finally, we adjust

our standard errors eivbe for the clustered nature of the intervention (at the village level) in all

estimations.

18Table 2 in the appendix provides evidence that there was no differential selection out of wheat production in the
treatment group. The results are robust to including households that grew other crops (lentils, vegetables, etc.).

19Including baseline values of the outcome variable increases the power of the estimator relative to difference-in-
differences estimators when auto-correlation is low and and allows for differences in the measurement of baseline
variables (McKenzie, 2012).
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Table 6 reports the results from estimating equation (21), using the application rates of the

three major fertilizers (urea, DAP, and potash) and an indicator for potash application used by

local farmers in the wheat season as the dependent variables in a series of regressions. In these

regressions we use the full experimental sample and the outcome variables are in logs. Therefore the

samples vary across specification based on whether farmers applied any of the respective fertilizer

in the endline. As shown in Section 3.7, the recommendations for urea and DAP may be higher or

lower than farmers’ status-quo application rates, but given the random assignment of treatment and

control villages, it seems plausible to maintain the assumption that there are no systematic patterns

of these differences. Therefore we can only distinguish whether the treatment had a differential

impact on total fertilizer use and cannot determine whether treatment farmers adjusted fertilizer

use in the direction of the recommendation.

Across the regressions, the treatment effects are of a generally small magnitude, representing

between 2 and 6 percent of the average level of fertilizer application in the control group, and

further are not statistically significant at conventional levels. The estimates remain insignificant

when control variables, including baseline application rates, are included to increase precision.

Interpreting the signs of the treatment effects as responses to the SHC information treatment

depends on whether the farmers considered the 4 metric ton per hectare target yield or if they

re-calibrated the recommendations based on their own subjective target yield. If farmers were

responsive to the recommendations based on the 4 metric ton per hectare target yield, then we

should expect to see increased application of all three fertilizers. If, on the other hand, farmers

re-calibrated the recommendations to a more attainable yield target, then we should expect to see

reductions in urea and DAP application and a smaller increase in potash application.

We find scant evidence that the information treatment increased the average urea application

(95 percent CI: -0.02, 0.10). These results suggest that receipt of a SHC had no systematic effect

on farmers’ subsequent urea application, and we can rule out positive or negative effects larger

than 10 percent. But the lack of a systematic effect also signals continued over-application of

urea relative to the efficient level required to achieve the attained yields. A similar narrative

applies to application of DAP: we fail to find convincing statistical evidence that receipt of SHC

recommendations systematically affected DAP application (95 percent CI: -0.14, 0.03). Indeed,

while the SHCs on average recommended an increase in DAP application to achieve a 4 metric
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ton per hectare target yield, the negative point estimate on the treatment effect is consistent with

the opposite behavior. When it comes to potash, the point estimate is consistent with what would

be expected if the SHC produced the appropriate response, though again there is rather weak

statistical evidence that this effect is systematic (95 percent CI: -0.09, 0.16). Since the majority

of farmers did not apply potash at all, we also estimated a linear probability model to test for the

effect of SHC receipt on a binary indicator of potash use (columns 7 and 8), but we do not find

strong evidence that the SHC increased the use of potash in the sample.

4.2 Heterogeneity in Treatment Effects

One explanation for why there may not be evidence of a systematic response to the SHC is that

farmers update their beliefs about the appropriate fertilizer application rates in different ways,

due to, among other factors, their degree of confidence in their initial beliefs. In this section we

look at heterogeneity in the SHC treatment effect by the level of farmers’ confidence. We expect

treatment farmers with higher levels of confidence to behave as if they were control farmers and

not respond to treatment while less confident farmers are more likely to change their behavior. To

test this prediction, our outcome variable of interest is the level of fertilizer usage in the endline.

Our regression equation is:

Fibve = β0 + β1Tiv + β2TivCi + β3Ci +X
′
iγ + µb + νe + εivbe (22)

where F is the log of fertilizer application rates measured in kg per hectare by farmer i from a

village in block b, Tiv is a treatment indicator. Across different estimations, we include two different

measures of confidence (Ci): if farmers have more doubts and the coefficient of variation the farmers’

elicited beliefs. We include block (strata) fixed effects µb and enumerator fixed effects νe. Where

noted, we include Xi vector of individual and household characteristics including gender, age,

literacy, landholding size, size of the treated plot, and baseline fertilizer usage to increase precision.

Finally, we adjust our standard errors eivbe for the clustered nature of the intervention (at the

village level) in all estimations.

Table 7 reports results that interact the treatment dummy with measures of confidence. Given

the lack of treatment effects on average, we might expect that only less confident farmers would
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be likely to change their input usage in response to new information. The theoretical predictions

seem strongly borne out by the results: less confident farmers applied more urea overall but their

input usage declines relatively more as an impact of the treatment. Farmers with one standard

deviation higher dispersion in beliefs (less confident) decrease their urea usage by 11 percent relative

to control farmers. Similar effects emerge for DAP and potash application rates, though we do not

find strong evidence for a comparable effect on the likelihood of applying potash (column 3).

Thus, while the results in Table 6 suggest that the SHC treatment was not successful overall,

the results in Table 7 suggest that the subset of less confident farmers were somewhat receptive

to the information and lowered their input usage in response to the recommendations. This is

contrary to what would be expected if farmers were basing fertilizer application decisions based

on the recommendations calibrated to a 4 metric ton per hectare yield target, but are consistent

with what would be expected if farmers were re-calibrating the recommendations based on what

they perceive to be more attainable yields. Further, the impacts are of a relatively large magnitude

and suggest that identifying and targeting farmers who are open to new information may increase

the returns to soil testing. In this estimation, we are unable to control for farmer ability because

we can only calculate it for those households in the treatment group whose soil characteristics we

know. However, the successful randomization implies that our treatment and control samples are

observationally similar in expectation, which should allay concerns that this effect is driven by

differences in farmers ability or other unobservables.

4.3 Demand for Information

We now turn to examining whether treatment farmers’ subjective beliefs and farming ability in-

fluence their demand for soil testing. Because soil tests and willingness to pay for soil tests were

only collected for farmers in the treatment, we restrict the sample to treatment farmers for the

remaining analysis. The theoretical model developed in section 2 predicts that willingness to pay

for a signal is decreasing in both confidence and ability. To test the comparative statics of ability

and confidence on demand for soil testing recommendations empirically, we use farmer i’s stated

willingness to pay for soil testing elicited during the baseline survey (WTPi) as our dependent

variable. We estimate a Tobit model to account for left-censoring in the stated valuations (thirty

percent of the sample state a willingness to pay of zero). The ability measure (Ai) used in the
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following estimations classifies households into high, medium, and low ability based on the differ-

ence between the realized yield in rabi 2013 and the yield they should have achieved given their

observed fertilizer application. We include a binary measure of trust in extension agents (Tri) to

control for perceived signal accuracy and the age and literacy of the household head to account for

initial beliefs (Ii).

Specifically, we estimate the following equation, where i indexes households, v indexes villages,

and k ∈ {1, 2, 3} indexes the confidence measures:

WTPiv = β0 + β1C
k
iv + β2Aiv + β3Triv + β4Iiv +X

′
ivγ + τv + eiv (23)

where the βs and γ are coefficients to be estimated and τv is a vector of village fixed effects.

Tables 8 and 9 provide the Tobit coefficient estimates for the latent WTP given in equation 23.

The coefficients of interest are β1 and β2, which capture the effects of confidence and ability on

WTP, respectively. Consistent with model predictions, farmers that are less confident about their

agricultural decisions have a higher WTP than the most confident farmers, which is consistent with

the model’s prediction (β1 < 0). We find that farmers with more doubts relative to their peers

(i.e. they are less confident in their decisions) have a higher WTP for the SHCs. Moving from

having fewer doubts to having above average doubts increases WTP by USD 0.45 (p-value= 0.04),

which is slightly less than one third of a standard deviation increase in WTP.20 Further, columns

2 and 3 demonstrate that WTP is increasing in both measures of dispersion (urea) as predicted by

the model, where a standard deviation decrease in dispersion (0.19) decreases willingness to pay

by an average of USD 0.30, or 15 percent of the total price of a SHC (p-value < 0.01). These

results are robust to the inclusion of baseline characteristics, as shown in columns 4 through 6,

and quantitatively similar to those using measures of dispersion for DAP in Table 9. These results

suggest that less confident farmers in Bihar may be aware of their potential knowledge gaps and

may demand information about decisions they make regularly, even after controlling for individual

levels of experience.

Farmer trust in extension services is positively correlated with WTP across the models (p-value

= 0.04) implying that subjective perceptions about the credibility of the source of the signal may be

20For comparison purposes, at the time of the survey, the price of SHCs was slightly above USD 2.00.
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important in farmer decisions to purchase or utilize soil testing and/or fertilizer recommendations,

though the effect is not large. Nevertheless, this has important implications, as extension agents

are a primary source of ‘official’ advice on inputs, technologies, and practices, and are likely to

continue to be the primary channel through which the government distributes SHCs under the

national program. Literacy increases demand for the SHCs by USD 0.27 (p-value = 0.03) as

farmers that are unable to read may anticipate interpreting the cards incorrectly. The impacts of

ability are jointly statistically insignificant across specification (p-value ≥ 0.49) but the coefficients

are in the direction predicted by the model. In summary, the result that less confident farmers have

a higher WTP is robust across all estimations, consistent with the theoretical model, and implies

that both the survey-elicited response and the dispersion of beliefs capture underlying heterogeneity

in individual confidence. Further, literacy may act as a barrier to adoption of SHCs, as illiterate

farmers have a lower WTP for SHCs in the baseline survey.

4.3.1 Usage of Information

We now turn to the relationship between confidence and responsiveness to the SHCs as predicted

by the model. Our dependent variable is the advice utilization measure (α) described in Section

3.5. We include input responsiveness for both urea (αU ) and DAP (αD) as they are the primary

fertilizers used by farmers in the sample during the rabi season. As discussed in Section 3.2,

all treatment farmers received input recommendations provided by the SHCs that included plot

specific application rates of urea and DAP, and various of micronutrients including zinc. In the

construction of the dependent variable, the baseline inputs are the fertilizer application rates in

rabi 2013 and the endline inputs are the fertilizer application rates in rabi 2014. The signal (S) is

the recommended value of fertilizer application displayed on the SHC based on the yield response

estimates from the soil scientists at RAU.

To test the comparative statics of ability and confidence on responsiveness to soil testing rec-

ommendations, we estimate the following equation using OLS:

αijv = β0 + β1C
k
ijv + β2Aijv + β3Trijv + β4Iijv +X

′
ijvγ + τv + uijv. (24)

where the responsiveness are fertilizer-specific j ∈ {U,D} and indexed by confidence measures
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k ∈ {1, 2, 3}, and, as before, the βs and γ are coefficients to be estimated. The coefficients of

interest are β1 and β2, which capture the effects of confidence and ability on input responsiveness

to the SHC recommendations, respectively.

Table 10 reports regression results for urea responsiveness, with standard errors adjusted for

clustering at the village level, both with and without individual and household characteristics. We

provide results for the subsample of observations for which the farmer responds in the direction

of the recommendation and does not overshoot the recommendation, or α ∈ [0, 1]. Less confident

farmers, categorized using both their incidence of relative doubts and the dispersion of their subjec-

tive beliefs, are more responsive to urea recommendations provided in SHCs. The advice utilization

measure (α) can be interpreted as a percentage movement towards the recommendation, so that

farmers with similar or more doubts than their peers move 14 percent closer (p value = 0.08) to the

recommended urea rate than those with fewer doubts. Responsiveness is increasing in the dispersion

of farmers’ beliefs, such that a standard deviation increase in the coefficient of variation in beliefs

(0.19) is associated with a 5.4 percent increase (p-value = 0.03) in responsiveness, with a similar

value of 6.3 percent using the standard deviation (p-value = 0.01). The results are robust to the

inclusion of numerous baseline characteristics (columns 4-6) with the exception of the coefficient

on relative doubts which becomes insignificant at conventional levels (p-value = 0.10). Table 11

reports regression results for DAP responsiveness, with standard errors clustered by village, both

with and without individual and household characteristics. The impacts of confidence on respon-

siveness are not significant for farmers’ relative doubts, though responsiveness is increasing in the

measures of dispersion.

The results on farmer ability confirm the predictions of the model for urea, as more able farmers

respond less to the urea target on the SHCs. Relative to low ability farmers, high ability farmers are

between 28 percent and 36 percent further from the recommendation. The coefficients for medium

ability farmers are negative and insignificant, but the coefficients on medium and high ability

farmers are jointly significant across all specification (p-values from 0.001 to 0.019). These results

are negative for DAP responsiveness but insignificant with the exception of column 4. Surprisingly,

after controlling for confidence and ability, farmers with less than five years of experience respond

less to the SHCs. An extension of the theory that includes farmers’ full history of learning suggests

that more periods of learning will increase accuracy and expected yields. However, those with little

30



experience may rely more on rules of thumb, own experimentation or social networks rather than

scientifically-derived recommendations during early periods.

We therefore see that, at least among treatment farmers, farmers that are less confident about

their agricultural decisions (using three separate measures of confidence) have a higher willingness

to pay for soil testing and recommendations, consistent with model predictions. We interpret these

results to suggest that less confident farmers in Bihar demand information outside of their own

experience or the information to which they typically have access. Further, when provided with

recommendations from the soil tests, less confident farmers were more likely to adjust their input

use in the direction of the recommendation (once re-calibrated based on more attainable yields)

and are more responsive to both the urea and DAP recommendations as predicted by the model.

5 Alternative Explanations

In this section we provide alternative explanations into the reasons behind the lack of response

to the SHC intervention. In the first part of this section, we report farmers’ own explanations

for why they over- or underapplied different fertilizers relative to the recommended doses. This

self-reporting generally points toward an adherence to traditional fertilizer use, reflecting a lack of

confidence in the information contained in the SHCs. We then explore two further explanations for

the lack of response. The first is that farmers simply did not understand the contents of the SHC;

we should not expect farmers to change their behavior on the basis of recommendations that they

do not understand. The second is that farmers did in fact internalize recommendations, and the

information did alter their preferred fertilizer mix, but other factors (such as cost, lack of access to

credit, insufficient liquidity, or lack of timely availability of specific fertilizers) prevented them from

acting on these changed preferences by shifting their actual application. The results from farmers’

self-reported explanations provide additional evidence that farmers’ confidence in their own input

decisions largely explain the lack of response to the soil health card intervention, and we discuss

the implications for future soil testing interventions in the following section.
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5.1 Self-Reported Explanations

In the endline survey, we asked farmers whether they had retained the SHCs that were distributed

prior to the rabi season, and whether they had consulted them in making fertilizer application

decisions. While 93 percent of farmers claimed to have kept the SHCs, only 56 percent were able

to locate the SHCs and show them to enumerators, and only 25 percent reported having consulted

the SHCs.

We then asked farmers to report how much of different fertilizers they had applied relative

to the recommendation: the recommended amount, more than the recommended amount, or less

than the recommended amount. Farmers that self reported having applied more or less than

the recommended amount were then asked why they did so. The results, presented in Table 13,

suggest that trust in their own input choices over the recommendations is a crucial factor, with

most farmers indicating a belief that their preferred amount was the correct amount and that the

scientific recommendations were incorrect. For example, 66 percent of the farmers who reported

having used more than the recommended amount of urea and 58 percent of those who used less

than the recommended amount of urea said they did so because they did not want to change

their behavior from previous seasons. We observed similar trends for DAP and potash. A similar

proportion of farmers that reported having used more than the recommended amount of fertilizers

said they believed yields would be reduced if they applied less.

Farmers that reported having applied less than the recommended amount also cited fertilizer

cost as a factor, especially for DAP and potash, which are not as heavily subsidized as urea,

and hence considerably more expensive. Liquidity constraints thus appear to be a barrier to

more balanced fertilizer application. For example, 38 percent of farmers that used less than the

recommended amount of DAP and potash said they did so because they did not have enough money

or because these fertilizers were too expensive. Interestingly, despite the high urea subsidy often

being blamed for the overapplication of urea, only 3 percent of farmers who applied more than the

recommended dose of urea said they did so because it was inexpensive.
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5.2 Did Farmers Understand the SHC?

A comparison of their subjective beliefs about whether they had used more or less than the rec-

ommended dose of a given fertilizer with the actual difference shows no significant correlation,

suggesting that farmers exhibited a poor awareness of the recommendations or their current appli-

cation rates. Only 40 percent of the farmers who overapplied urea (that is, those farmers whose

self-reported application was more than the recommended dose from the SHC) believed that they

had used more than the recommended dose. Similarly, of the farmers who overapplied DAP and

potash, only 16 percent and 4 percent, respectively, believed that they had used more of these

fertilizers than recommended by the SHCs. In contrast, the results seem to suggest that farmers

are more prone to believe they have underapplied these fertilizers.

We carried out a telephone survey among treatment farmers in the course of the 2014-15 rabi

season, not long after the SHCs were distributed, in order to further examine whether farmers

understood the SHC recommendations issued to them. Treatment farmers were asked if they

remembered whether their SHC recommended the use of some fertilizers that are less common in

the study area, namely potash, zinc, and sulfur. These took the form of simple yes/no questions.

The results of the phone survey show a very weak correlation between the actual recommendations

and those recalled by the farmers. On average, 74-78 percent of farmers with nutrient-deficient

soil correctly stated that the SHC recommended applying the relevant fertilizers. However, 67-68

percent of farmers with nutrient-sufficient soil wrongly stated that the SHC recommended applying

more of the relevant fertilizers.

In sum, these results support the notion that farmers generally have a bias toward assuming that

the SHCs recommended using more fertilizers and that farmers are unable to recall the information

in the SHC. However, we also found that this gap can be rectified substantially by repeating the

SHC information in a more salient context.

To assess whether trust in the quality of this information can explain these results, we also asked

farmers in the Madhubani district (a largely zinc-deficient region) to report their own assessment

of the zinc status of their soils. The results, reported in Table 15, show that even though, as we

saw above, most farmers were clearly aware of the SHC indication, it seems that they preferred to

ignore it: 96 percent of the farmers with zinc-sufficient soil according to the SHC recommendations
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believed their soils to be zinc deficient, and only 2 percent of those with zinc-sufficient soil believed

their soils to be zinc sufficient. In other words, even when they are aware of the SHC contents,

farmers seem to adhere to their own beliefs about the condition of their soils, a belief that tends

to assume deficiency of micronutrients.

5.3 Revealed Preferences for Zinc

To gain further insight into the reasons behind farmers’ seeming lack of responsiveness to the

SHC, we implemented a simplified Becker-DeGroot-Marschak (BDM) valuation elicitation exercise

following the conclusion of the endline survey.21 The exercise was conducted in order to reveal

farmers’ WTP for fertilizers they are underusing (specifically zinc) and to determine whether the

information obtained from the SHC affected this WTP. That is, we are interested in whether farmers

whose SHC indicated zinc deficiency and recommended application of zinc were willing to pay more

for zinc than farmers whose SHC indicated that their soils were zinc sufficient or who did not know

the status of their soil health. This distinction is important because the lack of SHC impact on

farmers’ actual fertilizer application can be interpreted as indicating that the information did not

affect their preferences or, alternatively, that it did affect preferences but that other factors, such

as costs, prevented farmers from acting on them. If both groups have a low WTP and there is no

impact of the information, then we cannot differentiate between these explanations. If both groups

have a high WTP, then we can rule out liquidity constraints as the main determinant of the lack

of adherence to the recommendations in the case of zinc and assume that the information had no

effect on the farmers’ preferences. Finally, if the zinc-deficient group has a higher WTP, then we

can conclude that the information was effective in encouraging zinc usage amongst farmers.

Before administering the BDM exercises, we randomly allocated farmers with zinc-deficient

soils into two groups. The protocol informed all farmers of the potential impact of zinc deficiency

for crops and the expected gains from application of zinc to deficient soils. This information

was conveyed in very general terms, without explicit reference to the farmers’ actual conditions.

21The BDM mechanism is widely used in experimental economics as an incentive-compatible procedure for eliciting
the WTP for a good or a service. In a BDM, each subject submits an offer price to purchase the good. Afterwards,
a binding sale price is randomly drawn from a distribution of prices ranging from a very low value to a price greater
than the anticipated maximum possible WTP among bidders. Any bidder who submits a bid greater than the sale
price receives a unit of the good and pays an amount equal to the sale price. If the bid is lower than the sale price,
the bidder gets nothing. The dominant strategy for the bidder is to truthfully reveal his or her preferences.
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However, farmers in the first group (group 1) were also shown their SHCs and reminded of their zinc

deficiency and the scientific recommendation to apply zinc in their fields. Farmers in the second

group (group 2) received no such reminder. Among farmers in the treatment group whose soil was

determined to be zinc sufficient (that is, their SHC indicated no deficiency and no need to apply

zinc), half were randomly selected to take part in the valuation exercise as well (group 3). A fourth

group (group 4) consisted of control farmers, for whom no soil testing was conducted. Farmers in

this group were notified by agents that there was no information on whether they needed zinc or

not. Due to logistical constraints, the BDM exercises in Madhubani district included only farmers

from the first three groups, whereas those in Bhojpur and Nawada districts included farmers from

the control group as well. Half of the farmers in each control village in Bhojpur and Nawada were

randomly selected to be part of the fourth group.

A comparison between groups 1 and 2 sheds light on the lower bound value that farmers place

on nutrient deficiency information contained in the SHCs. A comparison of groups 1 and 2 with

group 3 sheds light on the value of information indicating deficiency vis-à-vis sufficiency, while a

comparison of the composite group consisting of groups 1, 2, and 3 with group 4 provides evidence

on the impact of having SHC-based information at all. However, we stress that only the comparison

of group 1 with group 2 yields a proper counterfactual, because farmers in other groups have or

potentially have different soil characteristics that might be correlated with other attributes affecting

the WTP.

After explaining the way the valuation elicitation exercise would be implemented, we conducted

two practice rounds, with one practice round entailing a real bidding process (essentially open-ended

contingent valuation) with an actual transaction of money for a good of a relatively lower value

than zinc (a 250 g pack of lentils). In the actual zinc valuation exercise, farmers were offered 1 kg

packs of zinc sulfate (ZnSO4) fertilizer. The binding sale price (which was randomly drawn) ranged

from INR 10 to INR 60 (the prevailing market rate) for a 1 kg pack. A farmer with a stated WTP

above the randomly selected price was then bound to purchase the packet of zinc sulfate, with an

option to purchase a quantity up to the recommended dose for his or her tested plot at the random

sale price.

Table 16 reports the revealed WTP for zinc for the different groups in the BDM exercises.

Treatment farmers were willing to pay 41.2 Rs/kg on average, regardless of whether their soils were
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determined to be zinc deficient (groups 1 and 2) or zinc sufficient (group 3). Statistical tests of

sample mean WTPs in Table 17 indicate there are no significant differences between the WTPs in

any of the intergroup comparisons. Also, estimates of differences between the groups, based on a

linear regression of WTP on group dummy variables reported in Table 17, are small and statistically

insignificant. The WTP for zinc in Madhubani (which is generally a zinc-deficient region) is higher

than in Bhojpur or Nawada (generally zinc-sufficient regions) – INR 42.8 per kg versus INR 41

per kg, respectively – but even that difference is not statistically significant. Thus, farmers in all

groups have a positive willingness to pay for zinc, regardless of the information provided in the soil

health card. From this we conclude that liquidity constraints are not the primary determinant of

the lack of adherence to the SHC, at least in the case of zinc.

6 Discussion and Conclusions

The government of India recently launched an ambitious program of providing SHCs based on

individualized soil tests to promote balanced use of fertilizers in agriculture throughout India. The

program is expected to deliver more than 145 million SHCs covering all plots and farmers in India,

with farmers expected to receive a new SHC every three years. To evaluate the feasibility of this

program and test its potential effectiveness, we conducted a randomized controlled trial in three

districts of Bihar in which we mimicked the operational approach of the government’s SHC program.

Our experimental approach enabled us to test whether farmers would change their fertilizer use

pattern after receiving fertilization recommendations based on soil tests from their own farm plots.

Our results suggest that farmers largely ignore the soil test results and fertilizer use recommen-

dations contained in the SHCs. The impact of the SHCs on fertilizer application was insignificant,

both for farmers who applied more than the recommended dose of fertilizers and for those who

applied less. Thus, even farmers who could have saved money on fertilizers by following scientific

recommendations and applying less did not do so. Contrary to a prevailing narrative in policy cir-

cles, this suggests that neither credit nor liquidity constraints are a major reason for not attending

to the scientific recommendations, and points toward informational factors as the primary culprit.

To explain the adherence to own-beliefs, we have outlined a theoretical model of demand and

usage of information about optimal input application that allows for farmer heterogeneity in subjec-
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tive beliefs and the degree of confidence in those beliefs. The model makes clear and unambiguous

predictions about the effect of farmer ability and confidence on the demand for and the responsive-

ness to an external information signal. Specifically, the model predicts that farmers who are more

confident in their beliefs about proper input use are less likely to demand additional information,

and even in the case where such information is provided free of charge, such farmers are less likely

to respond to the generated signal. Similar, more skillful farmers are less likely to be willing to pay

even a modest sum for information, and would be less likely to respond to information provided.

Empirically, we test the predictions of this model in the context of a soil testing and fertilizer

recommendation intervention in the state of Bihar, in northern India. We measure farmers’ sub-

jective beliefs about appropriate fertilizer application rates using a visually-aided beliefs elicitation

mechanism. This experimental mechanism allows us to empirically estimate farmers’ prior mass

functions of appropriate urea and DAP application rates, from which moments can be estimated

assuming a stepwise uniform distribution of beliefs. We combine measures of confidence with farm-

ing ability with observed input use both before and after the information intervention. Farmers

exhibit significant heterogeneity in beliefs about optimal applications of urea and DAP and we

find that belief dispersion is correlated with other measures of self-confidence. Positive correlation

across dispersion measures and various measures of confidence is congruent with research that finds

within person confidence correlated across domains (Klayman et al., 1999) and suggests that the

various confidence measures are internally consistent and reflect actual heterogeneity in individual

characteristics.

Consistent with the model’s predictions, our empirical results suggest that farmers with stronger,

or less disperse, beliefs have a lower (stated) willingness to pay for SHCs and recommendations.

Furthermore, conditional on fertilizer use adjustment in the direction of the signal, confidence and

ability are associated with lower responsiveness to the recommendations provided on the SHCs,

even after adjusting for baseline wealth and agricultural characteristics. Additionally, we find that

farmers that have a greater degree of trust in agents from the national extension system are willing

to pay more for the SHCs, but we do not find evidence that trust has a significant effect on respon-

siveness to the recommendations. While the lack of a significant response to the SHCs is observed

only among the sample for which the response was in the direction of the signal (i.e., the adjust-

ment from baseline to endline was an increase or decrease consistent with the recommendation,
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though of a different magnitude), and this sample is only a portion of the entire baseline sample,

the large p-value associated with this estimate suggests that this non-result is not simply the result

of insufficient power.

Our findings relate to a larger literature in both developing and developed countries that iden-

tifies subjective beliefs as predictive of behavior in a variety of settings including insecticide treated

mosquito nets (Tarozzi et al., 2011), college choice (Wiswall and Zafar, 2015), and investment deci-

sions in children’s education (Dizon-Ross, 2019). Additionally, we provide further evidence in the

support of research on the role of confidence in demand and usage of information (Hoffman, 2016)

and highlight a source of observed heterogeneity that can undermine the efficacy of information

interventions (Bennett et al., 2016; BenYishay and Mobarak, 2018). Though, there are a number

of limitations of the analysis that we have noted.

In order to explore additional reasons behind the lack of responsiveness, we undertook a series of

exercises, including a BDM valuation elicitation exercise (in order to assess farmers’ WTP for zinc)

and short quizzes to test farmers’ knowledge of the contents of the SHCs. Many farmers believed

that changing their fertilizer according to the SHC recommendations could lead to yield losses.

Moreover, farmers also struggled to internalize the soil test results and recommendations despite

receiving the SHC in their native language and having its contents explained to them in one-to-one

sessions by trained personnel. The inability to recall the contents of the SHC could reflect lack of

interest or difficulty in absorbing information of this kind. Together, these exercises confirm that

most farmers trusted their own practices more than the recommendations and therefore were not

willing to change their existing practices.

From a policy perspective, our results have significant implications for information interven-

tions such as India’s ‘Soil Health Card’ scheme. Using the recommendations calibrated using the

4 metric tons per hectare target yield, the least confident farmers applied 37 kg/ha less urea than

the recommended rate at baseline while the remaining farmers applied 23 kg/ha less urea on av-

erage.22 Further, using the status-quo calibrated yields reveals that less confident farmers apply

urea at a rate 33 kg/ha higher than necessary for their current yields. The remaining farmers

apply urea at a rate of 19 kg/ha higher than the status-quo calibrated recommendations. Taken

22Here we refer to the least confident farmers as those that are in the 75th percentile of the distribution of the
coefficient of variation of their beliefs about optimal urea usage. Farmers with low belief dispersion (smaller CV) are
confident while those with high belief dispersion (large CV) and less confident.
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together, this suggests that less confident farmers in Bihar both are most likely to respond and

stand to benefit the most from targeted soil test recommendations either (1) when the goal is to

increase urea usage and yields (2) or when the goal is to limit urea usage while maintaining current

practices. Thus, pilot surveys that assess whether confidence, and therefore responsiveness to infor-

mation, is correlated with a higher marginal value of the information can be helpful to determine

the potential value of similar intervention interventions. Further, if there are cost constraints to

providing information, such as in the case of testing soils in a laboratory, identifying and targeting

low confidence/high marginal value of information respondents may produce the highest returns to

the program’s invesment.

In the case of fertilizer application in India, in addition to targeting less confident farmers,

our results suggest that the existing program potentially requires several modifications to become

effective. First, we suggest rigorously testing different ways to inspire farmers’ trust in the soil

test results and fertilizer use recommendations. For example, making local input dealers a part

of the soil testing program may help win farmers’ trust because farmers often seek input dealers’

advice on farming practices and technologies. Second, since many farmers struggle to understand

and remember the information in the SHC, follow-up visits by trained extension agents to discuss

the SHC results and recommendations may help increase compliance. Third, as previous research

in this area has shown (Ward and Singh 2015), farmers are often risk averse. Farmers may benefit

from some form of risk management that allows them to cover or transfer downside risks arising

from altering their fertilizer application, which may encourage greater compliance with the scientific

recommendations. We recommend using a series of randomized controlled trials to test a number

of different approaches to making SHCs more effective tools for the promotion of balanced fertilizer

use in Indian agriculture. Evidence generated from such experiments will help improve the soil

testing program not only in India but also potentially in other parts of the world where imbalanced

use of fertilizer is a serious problem.
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Table 1: Fertilizer Belief Distributions (Kg/Katha)

Urea DAP

Mean 2.91 1.55
(1.12) (0.65)

Std. Dev. 0.48 0.33
(0.24) (0.14)

Coefficient of variation 0.23 0.27
(0.20) (0.19)
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Table 2: Correlations Across Confidence Measures
Variables CV Urea CV DAP Same/lower Same/more

yields doubts

CV Urea 1.000
CV DAP 0.353∗∗∗ 1.000
Same/lower yields 0.273∗∗∗ 0.147∗∗∗ 1.000
Same/more doubts 0.140∗∗∗ 0.070∗∗ 0.469∗∗∗ 1.000

∗ ∗ ∗ p<0.01 ∗∗ p<0.05 ∗ p<0.10
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Table 3: Summary statistics across treatment groups at baseline

(1) (2) T-test
Control Treat P-value

Variable N Mean/SE N Mean/SE (1)-(2)

Urea kg. 204 43.99
(1.96)

427 40.25
(1.34)

0.11

DAP kg. 223 25.60
(1.29)

457 25.45
(0.95)

0.93

MOP kg. 221 2.11
(0.30)

458 2.99
(0.30)

0.07*

Apply MOP 221 0.30
(0.03)

458 0.31
(0.02)

0.81

CV Urea 259 0.24
(0.01)

458 0.23
(0.01)

0.34

More doubts 255 0.43
(0.03)

455 0.43
(0.02)

0.93

Literate 245 0.58
(0.03)

458 0.61
(0.02)

0.38

Age 243 45.07
(0.78)

456 45.84
(0.56)

0.42

Female 245 0.08
(0.02)

458 0.10
(0.01)

0.47

Plot 1 size (ha) 244 0.20
(0.01)

456 0.20
(0.01)

0.59

Plot 1 yield (kg/ha) 241 2626.13
(49.15)

432 2701.10
(40.58)

0.25

This table presents the mean and standard error of the mean (in parentheses) for several characteristics of households
across treatment groups. The same consists of all households that were present at the baseline. Column (5) shows
the p-value from testing whether the mean is equal across all treatment groups ( H0 := mean is equal across groups).
DAP is diammonium phosphate. Standard errors are clustered village for the test of equality * p < 0.10
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Table 4: Summary Statistics - Treatment Subsample

Variable Mean Std. Dev. Min. Max. N

Dependent Variables
WTP SHC (USD ) 1.61 1.76 0 10 356
αU 0.51 0.28 0 0.99 124
αD 0.43 0.29 0 1 249

Ind. Variables
Farmer has same/more doubts 0.44 0.5 0 1 363
CV urea 0.22 0.19 0.03 0.65 369
SD urea 0.49 0.25 0.14 1.27 369
CV DAP 0.28 0.19 0.06 0.70 366
SD DAP 0.33 0.14 0.14 0.75 366
Not trust extension 0.69 0.46 0 1 369
Medium ability 0.5 0.5 0 1 369
High ability 0.25 0.43 0 1 369
Experience (10 years) 0.14 0.35 0 1 369
Experience (5 years) 0.05 0.21 0 1 369

Controls
Age 46.94 14.43 15 80 369
Male 0.87 0.34 0 1 369
Can read or write 0.62 0.49 0 1 369
Years educ. 6.56 5.89 0 18 369
HH members 8.62 4.66 1 38 369
IHS House value 11.03 4.55 0 16.12 369
IHS Savings 2.28 4.27 0 13.59 369
Own cattle 0.26 0.44 0 1 369
Own plot 0.83 0.37 0 1 369
Plotsize (ha) 0.19 0.14 0.03 0.8 369
Own irrigation pump 0.25 0.43 0 1 369
Remember tested plot 0.78 0.42 0 1 369
Credit rabi 13 0.09 0.28 0 1 368

The sample includes treatment households. α = E−B
S−B is the measure of information responsiveness for the indicated

fertilizer. CV is the coefficient of variation of the beliefs distribution. SD is the standard deviation of the beliefs
distribution. Lack of trust equals one if farmers report not trusting extension agents. Experience (10 years) equals
one if farmers have between 5 and 10 years farming experience. Experience (5 years) equals one if farmers have 5
or less years farming experience. IHS is the inverse hyperbolic sine of the reported value. House and savings values
reported in Rupees/1000. Remember tested plot equals one if the farmer could recall which plot was tested during
the endline survey. Credit rabi 13 equals one if farmers received credit in the the 2013 rabi season.
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Table 5: Status-Quo Calibrated Recommendations and Target Yield (4 T/Ha) Recommendations

Fertilizer
Variable Urea DAP Potash

Average baseline application 210.8 136.1 13.2
Target yield recommendations (4 T/ha)
Average recommendation 245 164.6 81.5
Average difference -33.6 -28.5 -68.3
Average absolute difference 75.9 46.9 68.6
Status-quo calibrated recommendations
Average recommendation 122.9 100.4 43.1
Average difference 87.9 35.7 -29.9
Average absolute difference 104.8 53 32.7

Source: Authors’ calculations. All values in kg/ha
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Table 6: Effects of the SHC on fertilizer application rates.

(1) (2) (3) (4) (5) (6) (7) (8)
Urea Urea DAP DAP MOP MOP MOP=1 MOP=1

SHC 0.043 0.028 -0.058 -0.052 0.033 0.047 0.060 0.015
(0.031) (0.038) (0.045) (0.048) (0.065) (0.069) (0.039) (0.041)

Literate -0.055 0.016 -0.00032 -0.0052
(0.046) (0.040) (0.087) (0.047)

Age -0.0016 0.0017 -0.00091 -0.0011
(0.0016) (0.0014) (0.0042) (0.0014)

Female 0.0083 -0.032 -0.070 -0.0069
(0.050) (0.048) (0.11) (0.056)

Plot 1 size (ha) 0.18 0.033 -0.12 0.037
(0.13) (0.12) (0.22) (0.12)

Block FE Yes Yes Yes Yes Yes Yes Yes Yes

Enumerator FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 617 567 621 594 287 274 681 618
Adjusted R2 0.218 0.214 0.186 0.180 0.154 0.139 0.483 0.459
Mean dep. var 5.25 5.25 119.9 120.3 3.63 3.65 0.42 0.50

Notes: Dependent variables in columns 1-6 are endline fertilizer application rates in logs (kg/ha). Dependent variable
in columns 7 & 8 is binary variable equal to 1 if the farmer used MOP. All columns report the estimates from a
regression of the respective fertilizer application rate on receipt of the soil health card treatment, block fixed effects,
and enumerator fixed effects. Standard errors adjusted for clustering at the village level in parentheses. * Significant
at 10 percent level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 7: Heterogenous effect of the SHCs by confidence

(1) (2) (3) (4) (5) (6) (7) (8)
Urea Urea DAP DAP MOP MOP MOP=1 MOP=1

SHC 0.14*** 0.064** 0.015 -0.019 0.17* 0.12* 0.12** 0.11***
(0.051) (0.029) (0.053) (0.050) (0.085) (0.061) (0.051) (0.038)

SHC*CV Urea -0.44** -0.32** -0.49* -0.24
(0.20) (0.16) (0.28) (0.15)

CV Urea 0.16*** 0.059** 0.39* 0.085
(0.06) (0.03) (0.22) (0.086)

SHC*More doubts -0.034* -0.082 -0.19** -0.11*
(0.019) (0.050) (0.083) (0.061)

More doubts 0.032 0.052 0.26*** 0.067
(0.064) (0.036) (0.066) (0.044)

Block FE Yes Yes Yes Yes Yes Yes Yes Yes

Enumerator FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 616 607 620 611 287 281 678 671
Adjusted R2 0.225 0.222 0.195 0.183 0.157 0.160 0.490 0.481
Mean dep. var 5.25 5.25 4.73 4.73 3.63 3.65 0.42 0.41

Notes: Dependent variables in columns 1-6 are endline fertilizer application rates in logs (kg/ha). Dependent variable
in columns 7 & 8 is binary variable equal to 1 if the farmer used MOP. Estimations include controls for age, literacy,
gender, plot size, block fixed effects, and enumerator fixed effects. Standard errors adjusted for clustering at the
village level in parentheses. * Significant at 10 percent level; ** Significant at 5 percent level; *** Significant at 1
percent level.
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Table 8: Effects of confidence on willingness to pay for SHCs

(1) (2) (3) (4) (5) (6)
WTP WTP WTP WTP WTP WTP

Same/More doubts 0.567∗∗ 0.481∗

(0.270) (0.260)
CV Urea 1.442∗ 1.510∗∗

(0.833) (0.734)
SD Urea 1.608∗∗∗ 1.578∗∗∗

(0.567) (0.487)
Medium Ability −0.0589 −0.0613 0.00755 −0.177 −0.177 −0.0969

(0.290) (0.263) (0.267) (0.280) (0.264) (0.277)
High ability −0.215 −0.0701 −0.00386 −0.401 −0.289 −0.214

(0.405) (0.367) (0.373) (0.390) (0.356) (0.363)
Trust 0.336∗ 0.355∗ 0.346∗ 0.330∗ 0.350∗ 0.338∗

(0.202) (0.200) (0.200) (0.194) (0.201) (0.203)
Exp. 5 years −0.806∗ −0.893∗ −0.839∗ −0.540 −0.636 −0.598

(0.461) (0.465) (0.470) (0.532) (0.557) (0.549)
Literacy 0.344∗∗ 0.356∗∗ 0.362∗∗ 0.317∗ 0.323∗ 0.329∗∗

(0.154) (0.156) (0.152) (0.164) (0.165) (0.160)
Constant 0.516 0.240 −0.478 −0.813 −1.305 −1.899∗∗

(0.777) (0.860) (0.933) (0.789) (0.818) (0.849)

Observations 351 351 351 351 351 351
Controls N N N Y Y Y

Note: Dependent variable is stated willingess to pay for soil testing and recommendations ($US). The sample includes
treatment farmers that applied urea during the 2013 kharif season. The CV and SD of urea beliefs are measures of
farmer confidence based on the coefficient of variation and standard deviation of their subjective beliefs distributions.
Same/more doubts about agricultural practices is a measure of farmer confidence based on self reported incidence of
doubts. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions contain village
fixed effects and controls for age and gender. Additional control variables in columns 3-4 include household size,
CRRA, whether the household head remembered which plot was tested, house value, household savings, whether the
household owned cattle, whether the household owned the tested plot, baseline seed type, whether the household
owned an irrigation pump, whether the household had access to credit during rabi 2013. * Significant at 10 percent
level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 9: Effects of confidence on willingness to pay for SHCs - continued

(1) (2) (3) (4)
WTP WTP WTP WTP

CV DAP 1.159∗ 1.383∗∗∗

(0.627) (0.514)
SD DAP 1.906∗ 2.163∗∗

(0.978) (0.880)
Medium Ability −0.0516 −0.0200 −0.139 −0.117

(0.272) (0.272) (0.249) (0.250)
High ability −0.0549 −0.0432 −0.266 −0.265

(0.363) (0.362) (0.315) (0.311)
Trust 0.308 0.297 0.326∗ 0.318∗

(0.200) (0.204) (0.188) (0.191)
Exp. 5 years −0.896∗∗ −0.885∗ −0.765 −0.728

(0.437) (0.464) (0.520) (0.530)
Literacy 0.300∗∗ 0.310∗∗ 0.275∗ 0.291∗

(0.140) (0.143) (0.144) (0.148)
Constant 0.659 0.177 −0.919 −1.427

(0.809) (0.838) (0.808) (0.879)

Observations 351 351 351 351
Controls N N Y Y

Note: Dependent variable is stated willingess to pay for soil testing and recommendations ($US). The sample includes
treatment farmers that applied urea during the 2013 kharif season. The CV and SD of DAP beliefs are measures of
farmer confidence based on the coefficient of variation and standard deviation of their subjective beliefs distributions.
Same/more doubts about agricultural practices is a measure of farmer confidence based on self reported incidence of
doubts. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions contain village
fixed effects and controls for age and gender. Additional control variables in columns 3-4 include household size,
CRRA, whether the household head remembered which plot was tested, house value, household savings, whether the
household owned cattle, whether the household owned the tested plot, baseline seed type, whether the household
owned an irrigation pump, whether the household had access to credit during rabi 2013. * Significant at 10 percent
level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 10: Urea Responsiveness for Observations with αU ∈ [0, 1]

(1) (2) (3) (4) (5) (6)

Same/more doubts 0.141∗ 0.167∗

(0.0767) (0.0872)
CV Urea 0.300∗∗ 0.279∗∗

(0.117) (0.132)
SD Urea 0.261∗∗∗ 0.281∗∗

(0.0878) (0.108)
Medium Ability −0.0660 −0.0570 −0.0376 −0.136 −0.0877 −0.0550

(0.0994) (0.0932) (0.0914) (0.104) (0.0939) (0.0968)
High ability −0.336∗∗∗ −0.311∗∗ −0.289∗∗ −0.366∗∗∗ −0.316∗∗∗ −0.282∗∗∗

(0.115) (0.119) (0.118) (0.107) (0.0965) (0.0934)
Trust 0.0396 0.0377 0.0392 0.0288 0.0235 0.0259

(0.0510) (0.0522) (0.0510) (0.0587) (0.0591) (0.0554)
Exp. 5 years −0.246∗ −0.295∗∗ −0.311∗∗ −0.292 −0.331∗ −0.367∗

(0.144) (0.120) (0.119) (0.178) (0.181) (0.183)
Constant 0.439 0.358 0.230 0.551 0.642∗ 0.543

(0.274) (0.261) (0.269) (0.328) (0.341) (0.324)

Observations 122 124 124 122 124 124
R-squared 0.401 0.394 0.401 0.532 0.511 0.521
FE Y Y Y Y Y Y
Controls N N N Y Y Y

Note: Dependent variable is urea responsiveness (αU ). The sample includes treatment farmers for which αU ∈ [0, 1].
The CV of urea beliefs are measures of farmer confidence based on the coefficient of variation of their subjective beliefs
distributions. More doubts about agricultural practices is a measure of farmer confidence based on self reported
incidence of doubts. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions
contain village fixed effects and controls for age and gender. Additional control variables in columns 4 - 6 include
household size, CRRA, whether the household head remembered which plot was tested (=1), house value, household
savings, whether the household owned cattle (=1), whether the household owned the tested plot (=1), baseline seed
type, whether the household owned an irrigation pump (=1), whether the household had access to credit during rabi
2013. * Significant at 10 percent level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 11: DAP Responsiveness for Observations with αD ∈ [0, 1]

(1) (2) (3) (4) (5) (6)

Same/more doubts 0.0156 0.0237
(0.0468) (0.0491)

CV DAP 0.295∗∗ 0.281∗

(0.136) (0.144)
SD DAP 0.280 0.265∗

(0.191) (0.135)
Medium Ability −0.0539 −0.0407 −0.0363 −0.0615 −0.0436 −0.0384

(0.0582) (0.0618) (0.0597) (0.0511) (0.0549) (0.0521)
High ability −0.132 −0.0606 −0.0573 −0.138∗ −0.0638 −0.0588

(0.0895) (0.0986) (0.0979) (0.0744) (0.0922) (0.0902)
Trust −0.0156 −0.0262 −0.0310 0.00689 −0.00644 −0.0106

(0.0366) (0.0362) (0.0356) (0.0371) (0.0372) (0.0364)
Exp. 5 years −0.164 −0.196∗ −0.200∗∗ −0.180 −0.189∗ −0.196∗

(0.106) (0.107) (0.0951) (0.128) (0.106) (0.0993)
Constant 0.451∗∗ 0.393∗∗ 0.368∗ 0.192 0.0735 0.0594

(0.165) (0.174) (0.201) (0.215) (0.239) (0.253)

Observations 243 247 247 243 247 247
R-squared 0.311 0.342 0.361 0.507 0.566 0.572
FE Y Y Y Y Y Y
Controls N N N Y Y Y

Note: Dependent variable is DAP responsiveness (αD). The sample includes treatment farmers for which αD ∈ [0, 1].
The CV of DAP beliefs are measures of farmer confidence based on the coefficient of variation of their subjective
beliefs distributions. More doubts about agricultural practices is a measure of farmer confidence based on self reported
incidence of doubts. Standard errors (adjusted for clustering at the village level) in parentheses. All regressions contain
village fixed effects and controls for age and gender. Additional control variables in columns 4 - 6 include household
size, CRRA, whether the household head remembered which plot was tested , house value, household savings, whether
the household owned cattle, whether the household owned the tested plot, baseline seed type, whether the household
owned an irrigation pump, whether the household had access to credit during rabi 2013. * Significant at 10 percent
level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 12: Urea Responsiveness for Observations with αU ∈ [0, 1]

(1) (2) (3) (4) (5) (6) (7) (8)

CV Urea (Tri) 0.240∗∗ 0.221∗

(0.104) (0.123)
SD Urea (Tri) 0.293∗∗∗ 0.298∗∗∗

(0.0740) (0.0947)
CV Urea (LogN) 0.133∗ 0.115∗

(0.0791) (0.0649)
SD Urea (LogN) 0.0801∗ 0.0734

(0.0446) (0.0525)
Medium Ability −0.0655 −0.0420 −0.0652 −0.0578 −0.0960 −0.0621 −0.1000 −0.0937

(0.0921) (0.0895) (0.0946) (0.0970) (0.0926) (0.0932) (0.0947) (0.0969)
High ability −0.321∗∗∗ −0.293∗∗ −0.328∗∗∗ −0.325∗∗∗ −0.327∗∗∗ −0.287∗∗∗ −0.337∗∗∗ −0.332∗∗∗

(0.116) (0.117) (0.116) (0.116) (0.0965) (0.0920) (0.0978) (0.0987)
Trust 0.0383 0.0435 0.0388 0.0417 0.0235 0.0303 0.0236 0.0289

(0.0531) (0.0510) (0.0545) (0.0541) (0.0605) (0.0566) (0.0618) (0.0603)
Exp. 5 years −0.293∗∗ −0.291∗∗ −0.295∗∗ −0.297∗∗ −0.329∗ −0.344∗ −0.336∗ −0.339∗

(0.120) (0.119) (0.126) (0.128) (0.178) (0.178) (0.176) (0.177)
Constant 0.397 0.233 0.443 0.413 0.673∗ 0.556 0.696∗∗ 0.669∗

(0.258) (0.249) (0.265) (0.273) (0.342) (0.329) (0.336) (0.340)

Observations 124 124 124 124 124 124 124 124
R-squared 0.395 0.413 0.388 0.391 0.511 0.529 0.504 0.507
FE Y Y Y Y Y Y Y Y
Controls N N N N N N N N

Note: Dependent variable is urea responsiveness (αU ). The sample includes treatment farmers for which αU ∈ [0, 1].
The CV and SD of urea beliefs are measures of farmer confidence based on the coefficient of variation and standard
deviation of their subjective beliefs distributions. The CV and SD parameters are generated by fitting the subjective
beliefs to the triangular and log-normal distributions. Standard errors (adjusted for clustering at the village level) in
parentheses. All regressions contain village fixed effects and controls for age and gender. Additional control variables
in columns 4 - 6 include household size, CRRA, whether the household head remembered which plot was tested,
house value, household savings, whether the household owned cattle, whether the household owned the tested plot,
baseline seed type, whether the household owned an irrigation pump, whether the household had access to credit
during rabi 2013. * Significant at 10 percent level; ** Significant at 5 percent level; *** Significant at 1 percent level.
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Table 13: Self-Reported Rationales for Over- and Underapplying Fertilizers Relative to Recom-
mended Application

Urea DAP Potash
Reason for over/underapplication of fertilizers Freq. Percent Freq. Percent Freq. Percent

Why used more than recommended?
Fertilizer cost is low 5 2 0 0 0 0
Using less will reduce yields 46 30 27 52 7 50
Believe the usual amount is the right amount 101 66 25 48 7 50
Why used less than recommended?
Fertilizer cost is high 7 5 62 31 86 27
Does not have enough money 9 7 14 7 27 9
Yields would not increase by using more 8 6 4 2 10 3
Returns would not increase by using more 4 3 12 6 7 2
Using more would damage the crop 7 5 8 4 13 4
Believe usual amount is the right amount 76 58 92 46 152 48
Fertilizer is not available 9 7 1 1 10 3
Other 11 8 5 2 12 4

Source: Authors’ calculations. Farmers were asked how much fertilizer they used in comparison with the recommen-
dations (more than, less than, or recommended amount). Farmers who reported having applied more or less of the
recommended amount were then asked why they did so. DAP = diammonium phosphate.
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Table 14: Correspondence Between Farmers’ Memory of SHC and Actual SHC Recommendations
(Percent)

Actual SHC Farmer’s memory of SHC
Recommendations Zinc deficient Zinc sufficient Don’t know

Zinc deficient 81 3 16
Zinc sufficient 8 69 23

Source: Authors’ calculations. Reported numbers are percentages.
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Table 15: Correspondence Between Farmers’ Self-Reported Knowledge of Zinc Status and Actual
Status Based on Soil Analysis

SHC Farmer’s knowledge
Recommendations Zinc deficient Zinc sufficient Don’t know

Zinc deficient 94 0 6
Zinc sufficient 96 2 2

Source: Authors’ calculations. Reported numbers are percentages.
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Table 16: Characterization of Subsample Groups for Zinc BDM

Madhubani Bhojpur Mean WTP Std. dev.
Group Detail # farmers (Rs/kg) & Nawada (Rs/kg) (Rs/kg) (Rs/kg)

Group 1 Zinc deficient, shown SHC 82 42.5 41.8 42.3 21.2
Group 2 Zinc deficient, not shown SHC 81 41.2 44.4 42.2 21
Group 3 Zinc sufficient 176 43.7 40.4 41.7 20.3
Group 4 Control farmers 67 - 37.5 37.5 26.7

Total 406 42.8 41 41.2 21.7

Source: Authors’ calculations. BDM = Becker-DeGroot-Marschak (BDM) valuation elicitation exercise; Rs = rupees;
SHC = soil health card; WTP = willingness to pay.
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Table 17: Comparison of WTP Between Subsample Groups from BDM

T-tests of WTP Detail Diff. in WTP p-value

Group 1 vs. group 2 Value farmers place in information on deficiency 0.096 0.987
contained in the SHC

Group (1 + 2) vs. group 3 Value of information on deficiency vis-a-vis sufficiency 0.476 0.831
Group (1 + 2 + 3) vs. group 4 Value of having any information at all -4.424 0.126

Source: Authors’ calculations. Column (4) shows the p-values for t-tests of whether the difference in WTP between
the noted group equals 0. * p < 0.10, ** p < 0.05, *** p < 0.01. BDM = Becker-DeGroot-Marschak valuation
elicitation exercise; Rs = rupees; SHC = soil health card; WTP = willingness to pay.

60



Figure 1: Location of Sample Districts in Bihar, India
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Figure 2: Timeline of Data Collection
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Figure 3: Example: Soil Health Card (Translated)
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Figure 4: Percentage of Beans Allocated to DAP Ranges (Kg/Katha)
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Figure 5: Percentage of Beans Allocated to Urea Ranges (Kg/Katha)
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Figure 6: Densities of Baseline Urea and SHC Recommendations (Kg/Ha).

66



0
.1

.2
.3

.4

F
ra

c
ti
o

n

0 200 400 600

Baseline DAP Recommendation

Figure 7: Densities of Baseline DAP and SHC Recommendations (Kg/Ha).
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Figure 8: Density of Difference Between Baseline Urea Application Rates and Recommendation
(Kg/Ha).
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Figure 9: Density of Difference Between Baseline DAP Application Rates and Recommendation
(Kg/Ha).
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